tf_privacy.single_layer_softmax_classifier
Stay organized with collections
Save and categorize content based on your preferences.
Trains a single layer neural network classifier with softmax activation.
tf_privacy.single_layer_softmax_classifier(
train_dataset: datasets.RegressionDataset,
test_dataset: datasets.RegressionDataset,
epochs: int,
num_classes: int,
optimizer: tf.keras.optimizers.Optimizer,
loss: Union[tf.keras.losses.Loss, str] = 'categorical_crossentropy',
batch_size: int = 32,
kernel_regularizer: Optional[tf.keras.regularizers.Regularizer] = None
) -> Tuple[Any, List[float]]
Args |
train_dataset
|
consists of num_train many labeled examples, where the labels
are in {0,1,...,num_classes-1}.
|
test_dataset
|
consists of num_test many labeled examples, where the labels
are in {0,1,...,num_classes-1}.
|
epochs
|
the number of epochs.
|
num_classes
|
the number of classes.
|
optimizer
|
a tf.keras optimizer.
|
loss
|
a tf.keras loss function.
|
batch_size
|
a positive integer.
|
kernel_regularizer
|
a regularization function.
|
Returns |
List of test accuracies (one for each epoch) on test_dataset of model
trained on train_dataset.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-02-16 UTC.
[null,null,["Last updated 2024-02-16 UTC."],[],[],null,["# tf_privacy.single_layer_softmax_classifier\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/privacy/blob/v0.9.0/privacy/privacy/logistic_regression/single_layer_softmax.py#L22-L67) |\n\nTrains a single layer neural network classifier with softmax activation. \n\n tf_privacy.single_layer_softmax_classifier(\n train_dataset: datasets.RegressionDataset,\n test_dataset: datasets.RegressionDataset,\n epochs: int,\n num_classes: int,\n optimizer: tf.keras.optimizers.Optimizer,\n loss: Union[tf.keras.losses.Loss, str] = 'categorical_crossentropy',\n batch_size: int = 32,\n kernel_regularizer: Optional[tf.keras.regularizers.Regularizer] = None\n ) -\u003e Tuple[Any, List[float]]\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|----------------------|-----------------------------------------------------------------------------------------------|\n| `train_dataset` | consists of num_train many labeled examples, where the labels are in {0,1,...,num_classes-1}. |\n| `test_dataset` | consists of num_test many labeled examples, where the labels are in {0,1,...,num_classes-1}. |\n| `epochs` | the number of epochs. |\n| `num_classes` | the number of classes. |\n| `optimizer` | a tf.keras optimizer. |\n| `loss` | a tf.keras loss function. |\n| `batch_size` | a positive integer. |\n| `kernel_regularizer` | a regularization function. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| List of test accuracies (one for each epoch) on test_dataset of model trained on train_dataset. ||\n\n\u003cbr /\u003e"]]