tf.data.Dataset. The tf.data.Dataset object to convert to panda
dataframe. Examples should not be batched. The full dataset will be
loaded.
ds_info
Dataset info object. If given, helps improving the formatting.
Available either through tfds.load('mnist', with_info=True) or
tfds.builder('mnist').info
[null,null,["Last updated 2024-04-26 UTC."],[],[],null,["# tfds.as_dataframe\n\n\u003cbr /\u003e\n\n|--------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/datasets/blob/v4.9.3/tensorflow_datasets/core/as_dataframe.py#L144-L217) |\n\nConvert the dataset into a pandas dataframe. \n\n tfds.as_dataframe(\n ds: tf.data.Dataset, ds_info: Optional[dataset_info.DatasetInfo] = None\n ) -\u003e pd.DataFrame\n\n### Used in the notebooks\n\n| Used in the tutorials |\n|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| - [Custom training: walkthrough](https://www.tensorflow.org/tutorials/customization/custom_training_walkthrough) - [TensorFlow Datasets](https://www.tensorflow.org/datasets/overview) - [Linear Mixed-Effect Regression in {TF Probability, R, Stan}](https://www.tensorflow.org/probability/examples/HLM_TFP_R_Stan) - [Fitting Generalized Linear Mixed-effects Models Using Variational Inference](https://www.tensorflow.org/probability/examples/Linear_Mixed_Effects_Model_Variational_Inference) - [Multilevel Modeling Primer in TensorFlow Probability](https://www.tensorflow.org/probability/examples/Multilevel_Modeling_Primer) |\n\n**Warning:** The dataframe will be loaded entirely in memory, you may want to call [`tfds.as_dataframe`](../tfds/as_dataframe) on a subset of the data instead: \n\n df = tfds.as_dataframe(ds.take(10), ds_info)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `ds` | [`tf.data.Dataset`](https://www.tensorflow.org/api_docs/python/tf/data/Dataset). The tf.data.Dataset object to convert to panda dataframe. Examples should not be batched. The full dataset will be loaded. |\n| `ds_info` | Dataset info object. If given, helps improving the formatting. Available either through `tfds.load('mnist', with_info=True)` or `tfds.builder('mnist').info` |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|-------------|-------------------------------|\n| `dataframe` | The `pandas.DataFrame` object |\n\n\u003cbr /\u003e"]]