TensorFlow.org'da görüntüle | GitHub'da görüntüle | Not defterini indir | TF Hub modeline bakın |
Bu eğitimde, giriş verileri verilen bir TensorFlow Hub (TF-Hub) modülünden yerleştirmelerin nasıl oluşturulacağı ve çıkarılan yerleştirmeleri kullanarak yaklaşık bir en yakın komşular (ANN) dizininin nasıl oluşturulacağı gösterilmektedir. İndeks daha sonra gerçek zamanlı benzerlik eşleştirme ve alma için kullanılabilir.
Büyük bir veri kümesiyle uğraşırken, gerçek zamanlı olarak belirli bir sorguya en çok benzeyen öğeleri bulmak için tüm veri havuzunu tarayarak tam eşleştirme yapmak etkili değildir. Bu nedenle, hızda önemli bir artış için tam olarak en yakın komşu eşleşmelerini bulma konusunda biraz doğruluktan ödün vermemize olanak tanıyan yaklaşık bir benzerlik eşleştirme algoritması kullanıyoruz.
Bu öğreticide, bir sorguya en çok benzeyen başlıkları bulmak için bir dizi haber başlığı üzerinde gerçek zamanlı metin araması örneği gösteriyoruz. Anahtar kelime aramasından farklı olarak bu, metin yerleştirmede kodlanan anlamsal benzerliği yakalar.
Bu eğitimin adımları şunlardır:
- Örnek verileri indirin.
- TF-Hub modülünü kullanarak veriler için eklemeler oluşturun
- Yerleştirmeler için bir YSA dizini oluşturun
- Benzerlik eşleştirmesi için dizini kullanın
TF-Hub modülünden yerleştirmeleri oluşturmak için Apache Beam'i kullanıyoruz. Yaklaşık en yakın komşular dizinini oluşturmak için Spotify'ın ANNOY kitaplığını da kullanıyoruz.
Daha fazla model
Aynı mimariye sahip ancak farklı bir dilde eğitilmiş modeller için bu koleksiyona bakın. Burada şu anda tfhub.dev'de barındırılan tüm metin yerleştirmelerini bulabilirsiniz.
Kurmak
Gerekli kütüphaneleri yükleyin.
pip install -q apache_beam
pip install -q 'scikit_learn~=0.23.0' # For gaussian_random_matrix.
pip install -q annoy
Gerekli kitaplıkları içe aktarın
import os
import sys
import pickle
from collections import namedtuple
from datetime import datetime
import numpy as np
import apache_beam as beam
from apache_beam.transforms import util
import tensorflow as tf
import tensorflow_hub as hub
import annoy
from sklearn.random_projection import gaussian_random_matrix
print('TF version: {}'.format(tf.__version__))
print('TF-Hub version: {}'.format(hub.__version__))
print('Apache Beam version: {}'.format(beam.__version__))
TF version: 2.4.0 TF-Hub version: 0.11.0 Apache Beam version: 2.26.0
1. Örnek Verileri İndirin
Bir Milyon Haber Başlığı veri kümesi, saygın Australian Broadcasting Corp.'tan (ABC) 15 yıllık bir süre boyunca yayınlanan haber başlıklarını içerir. Bu haber veri seti, Avustralya'ya daha ayrıntılı bir şekilde odaklanarak, 2003'ün başından 2017'nin sonuna kadar dünya çapındaki kayda değer olayların özetlenmiş bir tarihsel kaydını içerir.
Biçim : Sekmeyle ayrılmış iki sütunlu veriler: 1) yayın tarihi ve 2) başlık metni. Biz sadece başlık metniyle ilgileniyoruz.
wget 'https://dataverse.harvard.edu/api/access/datafile/3450625?format=tab&gbrecs=true' -O raw.tsv
wc -l raw.tsv
head raw.tsv
--2021-01-07 12:50:08-- https://dataverse.harvard.edu/api/access/datafile/3450625?format=tab&gbrecs=true Resolving dataverse.harvard.edu (dataverse.harvard.edu)... 206.191.184.198 Connecting to dataverse.harvard.edu (dataverse.harvard.edu)|206.191.184.198|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 57600231 (55M) [text/tab-separated-values] Saving to: ‘raw.tsv’ raw.tsv 100%[===================>] 54.93M 14.7MB/s in 4.4s 2021-01-07 12:50:14 (12.4 MB/s) - ‘raw.tsv’ saved [57600231/57600231] 1103664 raw.tsv publish_date headline_text 20030219 "aba decides against community broadcasting licence" 20030219 "act fire witnesses must be aware of defamation" 20030219 "a g calls for infrastructure protection summit" 20030219 "air nz staff in aust strike for pay rise" 20030219 "air nz strike to affect australian travellers" 20030219 "ambitious olsson wins triple jump" 20030219 "antic delighted with record breaking barca" 20030219 "aussie qualifier stosur wastes four memphis match" 20030219 "aust addresses un security council over iraq"
Basitlik açısından yalnızca başlık metnini saklıyoruz ve yayın tarihini kaldırıyoruz
!rm -r corpus
!mkdir corpus
with open('corpus/text.txt', 'w') as out_file:
with open('raw.tsv', 'r') as in_file:
for line in in_file:
headline = line.split('\t')[1].strip().strip('"')
out_file.write(headline+"\n")
rm: cannot remove 'corpus': No such file or directory
tail corpus/text.txt
severe storms forecast for nye in south east queensland snake catcher pleads for people not to kill reptiles south australia prepares for party to welcome new year strikers cool off the heat with big win in adelaide stunning images from the sydney to hobart yacht the ashes smiths warners near miss liven up boxing day test timelapse: brisbanes new year fireworks what 2017 meant to the kids of australia what the papodopoulos meeting may mean for ausus who is george papadopoulos the former trump campaign aide
2. Veriler için Yerleştirmeler Oluşturun.
Bu öğreticide, başlık verilerine yönelik yerleştirmeler oluşturmak için Sinir Ağı Dil Modelini (NNLM) kullanıyoruz. Cümle yerleştirmeleri daha sonra cümle düzeyindeki anlam benzerliğini hesaplamak için kolayca kullanılabilir. Gömme oluşturma sürecini Apache Beam kullanarak çalıştırıyoruz.
Gömme çıkarma yöntemi
embed_fn = None
def generate_embeddings(text, module_url, random_projection_matrix=None):
# Beam will run this function in different processes that need to
# import hub and load embed_fn (if not previously loaded)
global embed_fn
if embed_fn is None:
embed_fn = hub.load(module_url)
embedding = embed_fn(text).numpy()
if random_projection_matrix is not None:
embedding = embedding.dot(random_projection_matrix)
return text, embedding
tf.Example yöntemine dönüştürün
def to_tf_example(entries):
examples = []
text_list, embedding_list = entries
for i in range(len(text_list)):
text = text_list[i]
embedding = embedding_list[i]
features = {
'text': tf.train.Feature(
bytes_list=tf.train.BytesList(value=[text.encode('utf-8')])),
'embedding': tf.train.Feature(
float_list=tf.train.FloatList(value=embedding.tolist()))
}
example = tf.train.Example(
features=tf.train.Features(
feature=features)).SerializeToString(deterministic=True)
examples.append(example)
return examples
Kiriş boru hattı
def run_hub2emb(args):
'''Runs the embedding generation pipeline'''
options = beam.options.pipeline_options.PipelineOptions(**args)
args = namedtuple("options", args.keys())(*args.values())
with beam.Pipeline(args.runner, options=options) as pipeline:
(
pipeline
| 'Read sentences from files' >> beam.io.ReadFromText(
file_pattern=args.data_dir)
| 'Batch elements' >> util.BatchElements(
min_batch_size=args.batch_size, max_batch_size=args.batch_size)
| 'Generate embeddings' >> beam.Map(
generate_embeddings, args.module_url, args.random_projection_matrix)
| 'Encode to tf example' >> beam.FlatMap(to_tf_example)
| 'Write to TFRecords files' >> beam.io.WriteToTFRecord(
file_path_prefix='{}/emb'.format(args.output_dir),
file_name_suffix='.tfrecords')
)
Rastgele Projeksiyon Ağırlık Matrisinin Oluşturulması
Rastgele projeksiyon, Öklid uzayında yer alan bir dizi noktanın boyutluluğunu azaltmak için kullanılan basit ama güçlü bir tekniktir. Teorik bir arka plan için Johnson-Lindenstrauss lemmasına bakın.
Yerleştirmelerin boyutunun rastgele projeksiyonla azaltılması, YSA dizinini oluşturmak ve sorgulamak için daha az zaman gerektiği anlamına gelir.
Bu derste Scikit-learn kütüphanesindeki Gauss Rastgele Projeksiyonunu kullanıyoruz.
def generate_random_projection_weights(original_dim, projected_dim):
random_projection_matrix = None
random_projection_matrix = gaussian_random_matrix(
n_components=projected_dim, n_features=original_dim).T
print("A Gaussian random weight matrix was creates with shape of {}".format(random_projection_matrix.shape))
print('Storing random projection matrix to disk...')
with open('random_projection_matrix', 'wb') as handle:
pickle.dump(random_projection_matrix,
handle, protocol=pickle.HIGHEST_PROTOCOL)
return random_projection_matrix
Parametreleri ayarla
Rastgele yansıtma olmadan orijinal yerleştirme alanını kullanarak bir dizin oluşturmak istiyorsanız projected_dim
parametresini None
olarak ayarlayın. Bunun, yüksek boyutlu yerleştirmeler için indeksleme adımını yavaşlatacağını unutmayın.
module_url = 'https://tfhub.dev/google/nnlm-en-dim128/2'
projected_dim = 64
İşlem hattını çalıştır
import tempfile
output_dir = tempfile.mkdtemp()
original_dim = hub.load(module_url)(['']).shape[1]
random_projection_matrix = None
if projected_dim:
random_projection_matrix = generate_random_projection_weights(
original_dim, projected_dim)
args = {
'job_name': 'hub2emb-{}'.format(datetime.utcnow().strftime('%y%m%d-%H%M%S')),
'runner': 'DirectRunner',
'batch_size': 1024,
'data_dir': 'corpus/*.txt',
'output_dir': output_dir,
'module_url': module_url,
'random_projection_matrix': random_projection_matrix,
}
print("Pipeline args are set.")
args
A Gaussian random weight matrix was creates with shape of (128, 64) Storing random projection matrix to disk... Pipeline args are set. /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/sklearn/utils/deprecation.py:86: FutureWarning: Function gaussian_random_matrix is deprecated; gaussian_random_matrix is deprecated in 0.22 and will be removed in version 0.24. warnings.warn(msg, category=FutureWarning) {'job_name': 'hub2emb-210107-125029', 'runner': 'DirectRunner', 'batch_size': 1024, 'data_dir': 'corpus/*.txt', 'output_dir': '/tmp/tmp0g361gzp', 'module_url': 'https://tfhub.dev/google/nnlm-en-dim128/2', 'random_projection_matrix': array([[-0.1349755 , -0.12082699, 0.07092581, ..., -0.02680793, -0.0459312 , -0.20462361], [-0.06197901, 0.01832142, 0.21362496, ..., 0.06641898, 0.14553738, -0.117217 ], [ 0.03452009, 0.14239163, 0.01371371, ..., 0.10422342, 0.02966668, -0.07094185], ..., [ 0.03384223, 0.05102025, 0.01941788, ..., -0.07500625, 0.09584965, -0.08593636], [ 0.11010087, -0.10597793, 0.06668758, ..., -0.0518654 , -0.14681441, 0.08449293], [ 0.26909502, -0.0291555 , 0.04305639, ..., -0.02295843, 0.1164921 , -0.04828371]])}
print("Running pipeline...")
%time run_hub2emb(args)
print("Pipeline is done.")
WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features. Running pipeline... Warning:tensorflow:5 out of the last 5 calls to <function recreate_function.<locals>.restored_function_body at 0x7efcac3599d8> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details. Warning:tensorflow:5 out of the last 5 calls to <function recreate_function.<locals>.restored_function_body at 0x7efcac3599d8> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details. Warning:tensorflow:6 out of the last 6 calls to <function recreate_function.<locals>.restored_function_body at 0x7efcac475598> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details. Warning:tensorflow:6 out of the last 6 calls to <function recreate_function.<locals>.restored_function_body at 0x7efcac475598> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details. WARNING:apache_beam.io.tfrecordio:Couldn't find python-snappy so the implementation of _TFRecordUtil._masked_crc32c is not as fast as it could be. CPU times: user 9min 4s, sys: 10min 14s, total: 19min 19s Wall time: 2min 30s Pipeline is done.
ls {output_dir}
emb-00000-of-00001.tfrecords
Oluşturulan yerleştirmelerden bazılarını okuyun...
embed_file = os.path.join(output_dir, 'emb-00000-of-00001.tfrecords')
sample = 5
# Create a description of the features.
feature_description = {
'text': tf.io.FixedLenFeature([], tf.string),
'embedding': tf.io.FixedLenFeature([projected_dim], tf.float32)
}
def _parse_example(example):
# Parse the input `tf.Example` proto using the dictionary above.
return tf.io.parse_single_example(example, feature_description)
dataset = tf.data.TFRecordDataset(embed_file)
for record in dataset.take(sample).map(_parse_example):
print("{}: {}".format(record['text'].numpy().decode('utf-8'), record['embedding'].numpy()[:10]))
headline_text: [ 0.07743962 -0.10065071 -0.03604915 0.03902601 0.02538098 -0.01991337 -0.11972483 0.03102058 0.16498186 -0.04299153] aba decides against community broadcasting licence: [ 0.02420221 -0.07736929 0.05655728 -0.18739551 0.11344934 0.12652674 -0.18189304 0.00422473 0.13149698 0.01910412] act fire witnesses must be aware of defamation: [-0.17413895 -0.05418579 0.07769868 0.05096476 0.08622053 0.33112594 0.04067763 0.00448784 0.15882017 0.33829722] a g calls for infrastructure protection summit: [ 0.16939437 -0.18585566 -0.14201084 -0.21779229 -0.1374832 0.14933842 -0.19583155 0.12921487 0.09811856 0.099967 ] air nz staff in aust strike for pay rise: [ 0.0230642 -0.03269081 0.18271443 0.23761444 -0.01575144 0.06109515 -0.01963143 -0.05211507 0.06050447 -0.20023327]
3. Yerleştirmeler için YSA Dizini Oluşturun
ANNOY (Yaklaşık En Yakın Komşular Ah Evet), uzayda belirli bir sorgu noktasına yakın noktaları aramak için Python bağlamalarına sahip bir C++ kitaplığıdır. Aynı zamanda belleğe eşlenen büyük salt okunur dosya tabanlı veri yapıları da oluşturur. Müzik önerileri için Spotify tarafından oluşturulmuş ve kullanılmaktadır. Eğer ilgileniyorsanız, NGT , FAISS , vb. gibi ANNOY'un diğer alternatifleriyle birlikte oynayabilirsiniz.
def build_index(embedding_files_pattern, index_filename, vector_length,
metric='angular', num_trees=100):
'''Builds an ANNOY index'''
annoy_index = annoy.AnnoyIndex(vector_length, metric=metric)
# Mapping between the item and its identifier in the index
mapping = {}
embed_files = tf.io.gfile.glob(embedding_files_pattern)
num_files = len(embed_files)
print('Found {} embedding file(s).'.format(num_files))
item_counter = 0
for i, embed_file in enumerate(embed_files):
print('Loading embeddings in file {} of {}...'.format(i+1, num_files))
dataset = tf.data.TFRecordDataset(embed_file)
for record in dataset.map(_parse_example):
text = record['text'].numpy().decode("utf-8")
embedding = record['embedding'].numpy()
mapping[item_counter] = text
annoy_index.add_item(item_counter, embedding)
item_counter += 1
if item_counter % 100000 == 0:
print('{} items loaded to the index'.format(item_counter))
print('A total of {} items added to the index'.format(item_counter))
print('Building the index with {} trees...'.format(num_trees))
annoy_index.build(n_trees=num_trees)
print('Index is successfully built.')
print('Saving index to disk...')
annoy_index.save(index_filename)
print('Index is saved to disk.')
print("Index file size: {} GB".format(
round(os.path.getsize(index_filename) / float(1024 ** 3), 2)))
annoy_index.unload()
print('Saving mapping to disk...')
with open(index_filename + '.mapping', 'wb') as handle:
pickle.dump(mapping, handle, protocol=pickle.HIGHEST_PROTOCOL)
print('Mapping is saved to disk.')
print("Mapping file size: {} MB".format(
round(os.path.getsize(index_filename + '.mapping') / float(1024 ** 2), 2)))
embedding_files = "{}/emb-*.tfrecords".format(output_dir)
embedding_dimension = projected_dim
index_filename = "index"
!rm {index_filename}
!rm {index_filename}.mapping
%time build_index(embedding_files, index_filename, embedding_dimension)
rm: cannot remove 'index': No such file or directory rm: cannot remove 'index.mapping': No such file or directory Found 1 embedding file(s). Loading embeddings in file 1 of 1... 100000 items loaded to the index 200000 items loaded to the index 300000 items loaded to the index 400000 items loaded to the index 500000 items loaded to the index 600000 items loaded to the index 700000 items loaded to the index 800000 items loaded to the index 900000 items loaded to the index 1000000 items loaded to the index 1100000 items loaded to the index A total of 1103664 items added to the index Building the index with 100 trees... Index is successfully built. Saving index to disk... Index is saved to disk. Index file size: 1.61 GB Saving mapping to disk... Mapping is saved to disk. Mapping file size: 50.61 MB CPU times: user 9min 54s, sys: 53.9 s, total: 10min 48s Wall time: 5min 5s
ls
corpus random_projection_matrix index raw.tsv index.mapping tf2_semantic_approximate_nearest_neighbors.ipynb
4. Benzerlik Eşleştirmesi için Dizini Kullanın
Artık anlamsal olarak bir girdi sorgusuna yakın haber başlıklarını bulmak için YSA dizinini kullanabiliriz.
Dizini ve eşleme dosyalarını yükleyin
index = annoy.AnnoyIndex(embedding_dimension)
index.load(index_filename, prefault=True)
print('Annoy index is loaded.')
with open(index_filename + '.mapping', 'rb') as handle:
mapping = pickle.load(handle)
print('Mapping file is loaded.')
Annoy index is loaded. /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/ipykernel_launcher.py:1: FutureWarning: The default argument for metric will be removed in future version of Annoy. Please pass metric='angular' explicitly. """Entry point for launching an IPython kernel. Mapping file is loaded.
Benzerlik eşleştirme yöntemi
def find_similar_items(embedding, num_matches=5):
'''Finds similar items to a given embedding in the ANN index'''
ids = index.get_nns_by_vector(
embedding, num_matches, search_k=-1, include_distances=False)
items = [mapping[i] for i in ids]
return items
Belirli bir sorgudan yerleştirmeyi çıkarın
# Load the TF-Hub module
print("Loading the TF-Hub module...")
%time embed_fn = hub.load(module_url)
print("TF-Hub module is loaded.")
random_projection_matrix = None
if os.path.exists('random_projection_matrix'):
print("Loading random projection matrix...")
with open('random_projection_matrix', 'rb') as handle:
random_projection_matrix = pickle.load(handle)
print('random projection matrix is loaded.')
def extract_embeddings(query):
'''Generates the embedding for the query'''
query_embedding = embed_fn([query])[0].numpy()
if random_projection_matrix is not None:
query_embedding = query_embedding.dot(random_projection_matrix)
return query_embedding
Loading the TF-Hub module... CPU times: user 757 ms, sys: 619 ms, total: 1.38 s Wall time: 1.37 s TF-Hub module is loaded. Loading random projection matrix... random projection matrix is loaded.
extract_embeddings("Hello Machine Learning!")[:10]
array([ 0.12164804, 0.0162079 , -0.15466002, -0.14580576, 0.03926325, -0.10124508, -0.1333948 , 0.0515029 , -0.14688903, -0.09971556])
En benzer öğeleri bulmak için bir sorgu girin
query = "confronting global challenges"
print("Generating embedding for the query...")
%time query_embedding = extract_embeddings(query)
print("")
print("Finding relevant items in the index...")
%time items = find_similar_items(query_embedding, 10)
print("")
print("Results:")
print("=========")
for item in items:
print(item)
Generating embedding for the query... CPU times: user 5.18 ms, sys: 596 µs, total: 5.77 ms Wall time: 2.19 ms Finding relevant items in the index... CPU times: user 555 µs, sys: 327 µs, total: 882 µs Wall time: 601 µs Results: ========= confronting global challenges emerging nations to help struggling global economy g7 warns of increasing global economic crisis world struggling to cope with global terrorism companies health to struggle amid global crisis external risks biggest threat to economy asian giants unite to tackle global crisis g7 ministers warn of slowing global growth experts to discuss global warming threat scientists warn of growing natural disasters
Daha fazlasını mı öğrenmek istiyorsunuz?
Tensorflow.org adresinden TensorFlow hakkında daha fazla bilgi edinebilir ve tensorflow.org/hub adresinde TF-Hub API belgelerine bakabilirsiniz. Daha fazla metin gömme modülü ve görüntü özelliği vektör modülü dahil olmak üzere mevcut TensorFlow Hub modüllerini tfhub.dev adresinde bulabilirsiniz.
Ayrıca Google'ın makine öğrenimine hızlı ve pratik bir giriş olan Makine Öğrenimi Hızlandırılmış Kursuna da göz atın.