tfl.conditional_pwl_calibration.default_keypoint_output_parameters
Stay organized with collections
Save and categorize content based on your preferences.
Helper creating default keypoint_output_parameters
.
tfl.conditional_pwl_calibration.default_keypoint_output_parameters(
num_keypoints: int,
units: int = 1,
monotonicity: str = 'none',
is_cyclic: bool = False,
clamp_min: bool = False,
clamp_max: bool = False,
derived_missing_output: bool = False
) -> Optional[tf.Tensor]
Primarily used for testing.
Args |
num_keypoints
|
number of keypoints for inputs.
|
units
|
number of parallel calibrations on one input.
|
monotonicity
|
none or increasing , monotonicity of the calibration.
|
is_cyclic
|
whether the calibration is cyclic. Only works if monotonicity ==
none .
|
clamp_min
|
whether the leftmost keypoint should be clamped. Only works if
monotonicity == increasing .
|
clamp_max
|
whether the rightmost keypoint should be clamped. Only works if
monotonicity == increasing .
|
derived_missing_output
|
whether to reserve a placeholder for the missing
output value.
|
Returns |
A tensor with a shape of (1, units, output_param_size) .
|
Raises |
ValueError if parsing failed.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-08-02 UTC.
[null,null,["Last updated 2024-08-02 UTC."],[],[],null,["# tfl.conditional_pwl_calibration.default_keypoint_output_parameters\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/lattice/blob/v2.1.1/tensorflow_lattice/python/conditional_pwl_calibration.py#L66-L111) |\n\nHelper creating default `keypoint_output_parameters`. \n\n tfl.conditional_pwl_calibration.default_keypoint_output_parameters(\n num_keypoints: int,\n units: int = 1,\n monotonicity: str = 'none',\n is_cyclic: bool = False,\n clamp_min: bool = False,\n clamp_max: bool = False,\n derived_missing_output: bool = False\n ) -\u003e Optional[tf.Tensor]\n\nPrimarily used for testing.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|--------------------------|-----------------------------------------------------------------------------------------------|\n| `num_keypoints` | number of keypoints for inputs. |\n| `units` | number of parallel calibrations on one input. |\n| `monotonicity` | `none` or `increasing`, monotonicity of the calibration. |\n| `is_cyclic` | whether the calibration is cyclic. Only works if `monotonicity == none`. |\n| `clamp_min` | whether the leftmost keypoint should be clamped. Only works if `monotonicity == increasing`. |\n| `clamp_max` | whether the rightmost keypoint should be clamped. Only works if `monotonicity == increasing`. |\n| `derived_missing_output` | whether to reserve a placeholder for the missing output value. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A tensor with a shape of `(1, units, output_param_size)`. ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|---|---|\n| `ValueError` if parsing failed. ||\n\n\u003cbr /\u003e"]]