tfl.configs.RegularizerConfig

Regularizer configuration for TFL canned estimators.

Used in the notebooks

Regularizers can either be applied to specific features, or can be applied globally to all features or lattices.

  • Calibrator regularizers:

    These regularizers are applied to PWL calibration layers.

  • Lattice regularizers:

    These regularizers are applied to lattice layers.

    • 'laplacian': Creates an instance of tfl.lattice_layer.LaplacianRegularizer. Laplacian regularizers penalize the difference between adjacent vertices in multi-cell lattice, resulting in a flatter lattice function.
    • 'torsion': Creates an instance of tfl.lattice_layer.TorsionRegularizer. Torsion regularizers penalizes how much the lattice function twists from side-to-side, a non-linear interactions in each 2 x 2 cell. Using this regularization results in a more linear lattice function.

Examples:

model_config = tfl.configs.CalibratedLatticeConfig(
    feature_configs=[
        tfl.configs.FeatureConfig(
            name='age',
            lattice_size=3,
            # Per feature regularization.
            regularizer_configs=[
                tfl.configs.RegularizerConfig(name='calib_hessian', l2=1e-4),
            ],
        ),
        tfl.configs.FeatureConfig(
            name='thal',
            # Partial monotonicity:
            # output(normal) <= output(fixed)
            # output(normal) <= output(reversible)
            monotonicity=[('normal', 'fixed'), ('normal', 'reversible')],
        ),
    ],
    # Global regularizers
    regularizer_configs=[
        # Torsion regularizer applied to the lattice to make it more linear.
        configs.RegularizerConfig(name='torsion', l2=1e-4),
        # Globally defined calibration regularizer is applied to all features.
        configs.RegularizerConfig(name='calib_hessian', l2=1e-4),
    ])
feature_analysis_input_fn = create_input_fn(num_epochs=1, ...)
train_input_fn = create_input_fn(num_epochs=100, ...)
estimator = tfl.estimators.CannedClassifier(
    feature_columns=feature_columns,
    model_config=model_config,
    feature_analysis_input_fn=feature_analysis_input_fn)
estimator.train(input_fn=train_input_fn)

name The name of the regularizer.
l1 l1 regularization amount.
l2 l2 regularization amount.

Methods

deserialize_nested_configs

View source

Returns a deserialized configuration dictionary.

from_config

View source

get_config

View source

Returns a configuration dictionary.