View source on GitHub
  
 | 
Updates a model config with the given set of (key, values) updates.
tfl.configs.apply_updates(
    model_config, updates
)
Any value passed in the updates that matches a field of the config will be
applied to the config. Nested configs can be updated as follows: to add/update
a field FIELD in feature config for feature FEATURE, use
feature__FEATURE__FIELD as the key. To add/update a field FIELD for
regularizer with name REGULARIZER use regularizer__REGULARIZER__FIELD as
the key. This naming scheme can be nested. When possible, string values will
be converted to the corresponding value type in the model config.
Example:
model_config = ...
updates = [
    ('output_max', 1),
    ('regularizer__torsion__l1', 0.001),
    ('feature__some_feature_name__lattice_size', 4),
    ('feature__some_feature_name__regularizer__calib_hessian__l2', 0.001),
    ('unrelated_haparam_not_affecting_model_config', 42),
]
configs.apply_updates(model_config, updates)
Returns | |
|---|---|
| Number of updates that are applied to the model config. | 
    View source on GitHub