Module: tfl.kronecker_factored_lattice_lib
Stay organized with collections
Save and categorize content based on your preferences.
Algorithm implementations required for Kronecker-Factored Lattice layer.
Functions
assert_constraints(...)
: Asserts that weights satisfy constraints.
bias_initializer(...)
: Initializes bias depending on output_min and output_max.
custom_reduce_prod(...)
: tf.reduce_prod(t, axis) with faster custom gradient.
default_init_params(...)
: Returns default initialization bounds depending on layer output bounds.
evaluate_with_hypercube_interpolation(...)
: Evaluates a Kronecker-Factored Lattice using hypercube interpolation.
finalize_scale_constraints(...)
: Clips scale to strictly satisfy all constraints.
finalize_weight_constraints(...)
: Approximately projects weights to strictly satisfy all constraints.
kfl_random_monotonic_initializer(...)
: Returns a uniformly random sampled monotonic weight tensor.
scale_initializer(...)
: Initializes scale depending on output_min and output_max.
verify_hyperparameters(...)
: Verifies that all given hyperparameters are consistent.
Other Members |
absolute_import
|
Instance of __future__._Feature
|
division
|
Instance of __future__._Feature
|
print_function
|
Instance of __future__._Feature
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-08-02 UTC.
[null,null,["Last updated 2024-08-02 UTC."],[],[],null,["# Module: tfl.kronecker_factored_lattice_lib\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/lattice/blob/v2.1.1/tensorflow_lattice/python/kronecker_factored_lattice_lib.py) |\n\nAlgorithm implementations required for Kronecker-Factored Lattice layer.\n\nFunctions\n---------\n\n[`assert_constraints(...)`](../tfl/kronecker_factored_lattice_lib/assert_constraints): Asserts that weights satisfy constraints.\n\n[`bias_initializer(...)`](../tfl/kronecker_factored_lattice_lib/bias_initializer): Initializes bias depending on output_min and output_max.\n\n[`custom_reduce_prod(...)`](../tfl/kronecker_factored_lattice_lib/custom_reduce_prod): tf.reduce_prod(t, axis) with faster custom gradient.\n\n[`default_init_params(...)`](../tfl/kronecker_factored_lattice_lib/default_init_params): Returns default initialization bounds depending on layer output bounds.\n\n[`evaluate_with_hypercube_interpolation(...)`](../tfl/kronecker_factored_lattice_lib/evaluate_with_hypercube_interpolation): Evaluates a Kronecker-Factored Lattice using hypercube interpolation.\n\n[`finalize_scale_constraints(...)`](../tfl/kronecker_factored_lattice_lib/finalize_scale_constraints): Clips scale to strictly satisfy all constraints.\n\n[`finalize_weight_constraints(...)`](../tfl/kronecker_factored_lattice_lib/finalize_weight_constraints): Approximately projects weights to strictly satisfy all constraints.\n\n[`kfl_random_monotonic_initializer(...)`](../tfl/kronecker_factored_lattice_lib/kfl_random_monotonic_initializer): Returns a uniformly random sampled monotonic weight tensor.\n\n[`scale_initializer(...)`](../tfl/kronecker_factored_lattice_lib/scale_initializer): Initializes scale depending on output_min and output_max.\n\n[`verify_hyperparameters(...)`](../tfl/kronecker_factored_lattice_lib/verify_hyperparameters): Verifies that all given hyperparameters are consistent.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Other Members ------------- ||\n|-----------------|-----------------------------------|\n| absolute_import | Instance of `__future__._Feature` |\n| division | Instance of `__future__._Feature` |\n| print_function | Instance of `__future__._Feature` |\n\n\u003cbr /\u003e"]]