View source on GitHub
  
 | 
Algorithm implementations required for Kronecker-Factored Lattice layer.
Functions
assert_constraints(...): Asserts that weights satisfy constraints.
bias_initializer(...): Initializes bias depending on output_min and output_max.
custom_reduce_prod(...): tf.reduce_prod(t, axis) with faster custom gradient.
default_init_params(...): Returns default initialization bounds depending on layer output bounds.
evaluate_with_hypercube_interpolation(...): Evaluates a Kronecker-Factored Lattice using hypercube interpolation.
finalize_scale_constraints(...): Clips scale to strictly satisfy all constraints.
finalize_weight_constraints(...): Approximately projects weights to strictly satisfy all constraints.
kfl_random_monotonic_initializer(...): Returns a uniformly random sampled monotonic weight tensor.
scale_initializer(...): Initializes scale depending on output_min and output_max.
verify_hyperparameters(...): Verifies that all given hyperparameters are consistent.
Other Members | |
|---|---|
| absolute_import | 
Instance of __future__._Feature
 | 
| division | 
Instance of __future__._Feature
 | 
| print_function | 
Instance of __future__._Feature
 | 
    View source on GitHub