tfl.model_info.CategoricalCalibrationNode
Stay organized with collections
Save and categorize content based on your preferences.
Represetns a categorical calibration layer.
tfl.model_info.CategoricalCalibrationNode(
input_node, output_values, default_input
)
Attributes |
input_node
|
Input node for the calibration.
|
output_values
|
Output calibration values. If the calibrated feature has
default/missing values, the last value will be for default/missing.
|
default_input
|
Default/missing input value or None.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-08-02 UTC.
[null,null,["Last updated 2024-08-02 UTC."],[],[],null,["# tfl.model_info.CategoricalCalibrationNode\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/lattice/blob/v2.1.1/tensorflow_lattice/python/model_info.py#L69-L79) |\n\nRepresetns a categorical calibration layer. \n\n tfl.model_info.CategoricalCalibrationNode(\n input_node, output_values, default_input\n )\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Attributes ---------- ||\n|-----------------|------------------------------------------------------------------------------------------------------------------------------|\n| `input_node` | Input node for the calibration. |\n| `output_values` | Output calibration values. If the calibrated feature has default/missing values, the last value will be for default/missing. |\n| `default_input` | Default/missing input value or None. |\n\n\u003cbr /\u003e"]]