tfl.pwl_calibration_layer.NaiveBoundsConstraints
Stay organized with collections
Save and categorize content based on your preferences.
Naively clips all elements of tensor to be within bounds.
tfl.pwl_calibration_layer.NaiveBoundsConstraints(
lower_bound=None, upper_bound=None
)
This constraint is used only for the weight tensor for missing output value.
Args |
lower_bound
|
Lower bound to clip variable values to.
|
upper_bound
|
Upper bound to clip variable values to.
|
Methods
from_config
@classmethod
from_config(
config
)
Instantiates a weight constraint from a configuration dictionary.
Example:
constraint = UnitNorm()
config = constraint.get_config()
constraint = UnitNorm.from_config(config)
Args |
config
|
A Python dictionary, the output of get_config .
|
get_config
View source
get_config()
Standard Keras config for serialization.
__call__
View source
__call__(
w
)
Applies constraints to w.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-08-02 UTC.
[null,null,["Last updated 2024-08-02 UTC."],[],[],null,["# tfl.pwl_calibration_layer.NaiveBoundsConstraints\n\n\u003cbr /\u003e\n\n|-----------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/lattice/blob/v2.1.1/tensorflow_lattice/python/pwl_calibration_layer.py#L779-L812) |\n\nNaively clips all elements of tensor to be within bounds. \n\n tfl.pwl_calibration_layer.NaiveBoundsConstraints(\n lower_bound=None, upper_bound=None\n )\n\nThis constraint is used only for the weight tensor for missing output value.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|---------------|-----------------------------------------|\n| `lower_bound` | Lower bound to clip variable values to. |\n| `upper_bound` | Upper bound to clip variable values to. |\n\n\u003cbr /\u003e\n\nMethods\n-------\n\n### `from_config`\n\n @classmethod\n from_config(\n config\n )\n\nInstantiates a weight constraint from a configuration dictionary.\n\n#### Example:\n\n constraint = UnitNorm()\n config = constraint.get_config()\n constraint = UnitNorm.from_config(config)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|----------|--------------------------------------------------|\n| `config` | A Python dictionary, the output of `get_config`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| A [`tf.keras.constraints.Constraint`](https://www.tensorflow.org/api_docs/python/tf/keras/constraints/Constraint) instance. ||\n\n\u003cbr /\u003e\n\n### `get_config`\n\n[View source](https://github.com/tensorflow/lattice/blob/v2.1.1/tensorflow_lattice/python/pwl_calibration_layer.py#L807-L812) \n\n get_config()\n\nStandard Keras config for serialization.\n\n### `__call__`\n\n[View source](https://github.com/tensorflow/lattice/blob/v2.1.1/tensorflow_lattice/python/pwl_calibration_layer.py#L799-L805) \n\n __call__(\n w\n )\n\nApplies constraints to w."]]