tfl.categorical_calibration_layer.CategoricalCalibrationConstraints
Stay organized with collections
Save and categorize content based on your preferences.
Monotonicity and bounds constraints for categorical calibration layer.
tfl.categorical_calibration_layer.CategoricalCalibrationConstraints(
output_min=None, output_max=None, monotonicities=None
)
Updates the weights of CategoricalCalibration layer to satify bound and
monotonicity constraints. The update is an approximate L2 projection into the
constrained parameter space.
Args |
output_min
|
Minimum possible output of categorical function.
|
output_max
|
Maximum possible output of categorical function.
|
monotonicities
|
Monotonicities of CategoricalCalibration layer.
|
Methods
from_config
@classmethod
from_config(
config
)
Instantiates a weight constraint from a configuration dictionary.
Example:
constraint = UnitNorm()
config = constraint.get_config()
constraint = UnitNorm.from_config(config)
Args |
config
|
A Python dictionary, the output of get_config .
|
get_config
View source
get_config()
Standard Keras config for serialization.
__call__
View source
__call__(
w
)
Applies constraints to w.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-08-02 UTC.
[null,null,["Last updated 2024-08-02 UTC."],[],[],null,["# tfl.categorical_calibration_layer.CategoricalCalibrationConstraints\n\n\u003cbr /\u003e\n\n|-------------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/lattice/blob/v2.1.1/tensorflow_lattice/python/categorical_calibration_layer.py#L289-L332) |\n\nMonotonicity and bounds constraints for categorical calibration layer. \n\n tfl.categorical_calibration_layer.CategoricalCalibrationConstraints(\n output_min=None, output_max=None, monotonicities=None\n )\n\nUpdates the weights of CategoricalCalibration layer to satify bound and\nmonotonicity constraints. The update is an approximate L2 projection into the\nconstrained parameter space.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|------------------|--------------------------------------------------|\n| `output_min` | Minimum possible output of categorical function. |\n| `output_max` | Maximum possible output of categorical function. |\n| `monotonicities` | Monotonicities of CategoricalCalibration layer. |\n\n\u003cbr /\u003e\n\nMethods\n-------\n\n### `from_config`\n\n @classmethod\n from_config(\n config\n )\n\nInstantiates a weight constraint from a configuration dictionary.\n\n#### Example:\n\n constraint = UnitNorm()\n config = constraint.get_config()\n constraint = UnitNorm.from_config(config)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|----------|--------------------------------------------------|\n| `config` | A Python dictionary, the output of `get_config`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| A [`tf.keras.constraints.Constraint`](https://www.tensorflow.org/api_docs/python/tf/keras/constraints/Constraint) instance. ||\n\n\u003cbr /\u003e\n\n### `get_config`\n\n[View source](https://github.com/tensorflow/lattice/blob/v2.1.1/tensorflow_lattice/python/categorical_calibration_layer.py#L326-L332) \n\n get_config()\n\nStandard Keras config for serialization.\n\n### `__call__`\n\n[View source](https://github.com/tensorflow/lattice/blob/v2.1.1/tensorflow_lattice/python/categorical_calibration_layer.py#L318-L324) \n\n __call__(\n w\n )\n\nApplies constraints to w."]]