|  View source on GitHub | 
Regularizer configuration for TFL canned estimators.
tfl.configs.RegularizerConfig(
    name, l1=0.0, l2=0.0
)
Used in the notebooks
| Used in the tutorials | 
|---|
Regularizers can either be applied to specific features, or can be applied globally to all features or lattices.
- Calibrator regularizers: - These regularizers are applied to PWL calibration layers. - 'calib_laplacian': Creates an instance of- tfl.pwl_calibration_layer.LaplacianRegularizer. A calibrator laplacian regularizer penalizes the changes in the output and results in a flatter calibration function.
- 'calib_hessian': Creates an instance of- tfl.pwl_calibration_layer.HessianRegularizer. A calibrator hessian regularizer penalizes changes in the slope, resulting in a more linear calibration.
- 'calib_wrinkle': Creates an instance of- tfl.pwl_calibration_layer.WrinkleRegularizer. A calibrator wrinkle regularizer penalizes the second derivative, resulting in a smoother function with less changes in the curvature.
 
- Lattice regularizers: - These regularizers are applied to lattice layers. - 'laplacian': Creates an instance of- tfl.lattice_layer.LaplacianRegularizer. Laplacian regularizers penalize the difference between adjacent vertices in multi-cell lattice, resulting in a flatter lattice function.
- 'torsion': Creates an instance of- tfl.lattice_layer.TorsionRegularizer. Torsion regularizers penalizes how much the lattice function twists from side-to-side, a non-linear interactions in each 2 x 2 cell. Using this regularization results in a more linear lattice function.
 
Examples:
model_config = tfl.configs.CalibratedLatticeConfig(
    feature_configs=[
        tfl.configs.FeatureConfig(
            name='age',
            lattice_size=3,
            # Per feature regularization.
            regularizer_configs=[
                tfl.configs.RegularizerConfig(name='calib_hessian', l2=1e-4),
            ],
        ),
        tfl.configs.FeatureConfig(
            name='thal',
            # Partial monotonicity:
            # output(normal) <= output(fixed)
            # output(normal) <= output(reversible)
            monotonicity=[('normal', 'fixed'), ('normal', 'reversible')],
        ),
    ],
    # Global regularizers
    regularizer_configs=[
        # Torsion regularizer applied to the lattice to make it more linear.
        configs.RegularizerConfig(name='torsion', l2=1e-4),
        # Globally defined calibration regularizer is applied to all features.
        configs.RegularizerConfig(name='calib_hessian', l2=1e-4),
    ])
feature_analysis_input_fn = create_input_fn(num_epochs=1, ...)
train_input_fn = create_input_fn(num_epochs=100, ...)
estimator = tfl.estimators.CannedClassifier(
    feature_columns=feature_columns,
    model_config=model_config,
    feature_analysis_input_fn=feature_analysis_input_fn)
estimator.train(input_fn=train_input_fn)
| Args | |
|---|---|
| name | The name of the regularizer. | 
| l1 | l1 regularization amount. | 
| l2 | l2 regularization amount. | 
Methods
deserialize_nested_configs
@classmethoddeserialize_nested_configs( config, custom_objects=None )
Returns a deserialized configuration dictionary.
from_config
@classmethodfrom_config( config, custom_objects=None )
get_config
get_config()
Returns a configuration dictionary.