- Descrição :
O GEM é um ambiente de referência para Geração de Linguagem Natural com foco em sua Avaliação, tanto por meio de anotações humanas quanto por Métricas automatizadas.
O objetivo do GEM é: (1) medir o progresso do NLG em 13 conjuntos de dados abrangendo muitas tarefas e idiomas do NLG. (2) fornecer uma análise aprofundada dos dados e modelos apresentados por meio de declarações de dados e conjuntos de desafios. (3) desenvolver padrões para avaliação de texto gerado usando métricas automatizadas e humanas.
Mais informações podem ser encontradas em https://gem-benchmark.com .
Documentação Adicional : Explore em Papers With Code
Página inicial : https://gem-benchmark.com
Código fonte :
tfds.text.gem.Gem
Versões :
-
1.0.0
: versão inicial -
1.0.1
: Atualize o filtro de links inválidos para MLSum -
1.1.0
(padrão): Liberação dos Conjuntos de Desafio
-
Chaves supervisionadas (Consulte
as_supervised
doc ):None
Figura ( tfds.show_examples ): Não compatível.
gem/common_gen (configuração padrão)
Descrição da configuração : CommonGen é uma tarefa de geração de texto restrita, associada a um conjunto de dados de referência, para testar explicitamente as máquinas quanto à capacidade de raciocínio generativo de bom senso. Dado um conjunto de conceitos comuns; a tarefa é gerar uma frase coerente descrevendo um cenário cotidiano usando esses conceitos.
Tamanho do download :
1.84 MiB
Tamanho do conjunto de dados :
16.84 MiB
Cache automático ( documentação ): Sim
Divisões :
Dividir | Exemplos |
---|---|
'challenge_test_scramble' | 500 |
'challenge_train_sample' | 500 |
'challenge_validation_sample' | 500 |
'test' | 1.497 |
'train' | 67.389 |
'validation' | 993 |
- Estrutura de recursos :
FeaturesDict({
'concept_set_id': int32,
'concepts': Sequence(string),
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'target': string,
})
- Documentação do recurso:
Característica | Classe | Forma | Tipo D | Descrição |
---|---|---|---|---|
RecursosDict | ||||
concept_set_id | tensor | int32 | ||
conceitos | Sequência(Tensor) | (Nenhum,) | corda | |
gem_id | tensor | corda | ||
gem_parent_id | tensor | corda | ||
referências | Sequência(Tensor) | (Nenhum,) | corda | |
alvo | tensor | corda |
- Exemplos ( tfds.as_dataframe ):
- Citação :
@inproceedings{lin2020commongen,
title = "CommonGen: A Constrained Text Generation Challenge for Generative Commonsense Reasoning",
author = "Lin, Bill Yuchen and
Zhou, Wangchunshu and
Shen, Ming and
Zhou, Pei and
Bhagavatula, Chandra and
Choi, Yejin and
Ren, Xiang",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.findings-emnlp.165",
pages = "1823--1840",
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gem/cs_restaurants
Descrição da configuração : A tarefa é gerar respostas no contexto de um sistema de diálogo (hipotético) que fornece informações sobre restaurantes. A entrada é um tipo básico de ato de intenção/diálogo e uma lista de slots (atributos) e seus valores. A saída é uma frase em linguagem natural.
Tamanho do download :
1.46 MiB
Tamanho do conjunto de dados :
2.71 MiB
Cache automático ( documentação ): Sim
Divisões :
Dividir | Exemplos |
---|---|
'challenge_test_scramble' | 500 |
'challenge_train_sample' | 500 |
'challenge_validation_sample' | 500 |
'test' | 842 |
'train' | 3.569 |
'validation' | 781 |
- Estrutura de recursos :
FeaturesDict({
'dialog_act': string,
'dialog_act_delexicalized': string,
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'target': string,
'target_delexicalized': string,
})
- Documentação do recurso:
Característica | Classe | Forma | Tipo D | Descrição |
---|---|---|---|---|
RecursosDict | ||||
dialog_act | tensor | corda | ||
dialog_act_delexicalized | tensor | corda | ||
gem_id | tensor | corda | ||
gem_parent_id | tensor | corda | ||
referências | Sequência(Tensor) | (Nenhum,) | corda | |
alvo | tensor | corda | ||
target_delexicalized | tensor | corda |
- Exemplos ( tfds.as_dataframe ):
- Citação :
@inproceedings{cs_restaurants,
address = {Tokyo, Japan},
title = {Neural {Generation} for {Czech}: {Data} and {Baselines} },
shorttitle = {Neural {Generation} for {Czech} },
url = {https://www.aclweb.org/anthology/W19-8670/},
urldate = {2019-10-18},
booktitle = {Proceedings of the 12th {International} {Conference} on {Natural} {Language} {Generation} ({INLG} 2019)},
author = {Dušek, Ondřej and Jurčíček, Filip},
month = oct,
year = {2019},
pages = {563--574}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gema/dardo
Descrição da configuração : o DART é um corpus de geração de registro de dados para texto estruturado grande e de domínio aberto com anotações de sentença de alta qualidade com cada entrada sendo um conjunto de triplos de relação de entidade seguindo uma ontologia estruturada em árvore.
Tamanho do download :
28.01 MiB
Tamanho do conjunto de dados :
33.78 MiB
Cache automático ( documentação ): Sim
Divisões :
Dividir | Exemplos |
---|---|
'test' | 6.959 |
'train' | 62.659 |
'validation' | 2.768 |
- Estrutura de recursos :
FeaturesDict({
'dart_id': int32,
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'subtree_was_extended': bool,
'target': string,
'target_sources': Sequence(string),
'tripleset': Sequence(string),
})
- Documentação do recurso:
Característica | Classe | Forma | Tipo D | Descrição |
---|---|---|---|---|
RecursosDict | ||||
dart_id | tensor | int32 | ||
gem_id | tensor | corda | ||
gem_parent_id | tensor | corda | ||
referências | Sequência(Tensor) | (Nenhum,) | corda | |
subtree_was_extended | tensor | bool | ||
alvo | tensor | corda | ||
target_sources | Sequência(Tensor) | (Nenhum,) | corda | |
tripleset | Sequência(Tensor) | (Nenhum,) | corda |
- Exemplos ( tfds.as_dataframe ):
- Citação :
@article{radev2020dart,
title=Dart: Open-domain structured data record to text generation,
author={Radev, Dragomir and Zhang, Rui and Rau, Amrit and Sivaprasad, Abhinand and Hsieh, Chiachun and Rajani, Nazneen Fatema and Tang, Xiangru and Vyas, Aadit and Verma, Neha and Krishna, Pranav and others},
journal={arXiv preprint arXiv:2007.02871},
year={2020}
}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gem/e2e_nlg
Descrição da configuração : O conjunto de dados E2E é projetado para uma tarefa de dados para texto de domínio limitado - geração de descrições/recomendações de restaurantes com base em até 8 atributos diferentes (nome, área, faixa de preço, etc.)
Tamanho do download :
13.99 MiB
Tamanho do conjunto de dados :
16.92 MiB
Cache automático ( documentação ): Sim
Divisões :
Dividir | Exemplos |
---|---|
'challenge_test_scramble' | 500 |
'challenge_train_sample' | 500 |
'challenge_validation_sample' | 500 |
'test' | 4.693 |
'train' | 33.525 |
'validation' | 4.299 |
- Estrutura de recursos :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'meaning_representation': string,
'references': Sequence(string),
'target': string,
})
- Documentação do recurso:
Característica | Classe | Forma | Tipo D | Descrição |
---|---|---|---|---|
RecursosDict | ||||
gem_id | tensor | corda | ||
gem_parent_id | tensor | corda | ||
representação_significado | tensor | corda | ||
referências | Sequência(Tensor) | (Nenhum,) | corda | |
alvo | tensor | corda |
- Exemplos ( tfds.as_dataframe ):
- Citação :
@inproceedings{e2e_cleaned,
address = {Tokyo, Japan},
title = {Semantic {Noise} {Matters} for {Neural} {Natural} {Language} {Generation} },
url = {https://www.aclweb.org/anthology/W19-8652/},
booktitle = {Proceedings of the 12th {International} {Conference} on {Natural} {Language} {Generation} ({INLG} 2019)},
author = {Dušek, Ondřej and Howcroft, David M and Rieser, Verena},
year = {2019},
pages = {421--426},
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gem/mlsum_de
Descrição da configuração : MLSum é um conjunto de dados de resumo multilíngue em grande escala. É construído a partir de agências de notícias on-line, com foco no alemão.
Tamanho do download :
345.98 MiB
Tamanho do conjunto de dados :
963.60 MiB
Armazenado em cache automaticamente ( documentação ): Não
Divisões :
Dividir | Exemplos |
---|---|
'challenge_test_covid' | 5.058 |
'challenge_train_sample' | 500 |
'challenge_validation_sample' | 500 |
'test' | 10.695 |
'train' | 220.748 |
'validation' | 11.392 |
- Estrutura de recursos :
FeaturesDict({
'date': string,
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'target': string,
'text': string,
'title': string,
'topic': string,
'url': string,
})
- Documentação do recurso:
Característica | Classe | Forma | Tipo D | Descrição |
---|---|---|---|---|
RecursosDict | ||||
encontro | tensor | corda | ||
gem_id | tensor | corda | ||
gem_parent_id | tensor | corda | ||
referências | Sequência(Tensor) | (Nenhum,) | corda | |
alvo | tensor | corda | ||
texto | tensor | corda | ||
título | tensor | corda | ||
tema | tensor | corda | ||
url | tensor | corda |
- Exemplos ( tfds.as_dataframe ):
- Citação :
@inproceedings{scialom-etal-2020-mlsum,
title = "{MLSUM}: The Multilingual Summarization Corpus",
author = {Scialom, Thomas and Dray, Paul-Alexis and Lamprier, Sylvain and Piwowarski, Benjamin and Staiano, Jacopo},
booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
year = {2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gem/mlsum_es
Descrição da configuração : MLSum é um conjunto de dados de resumo multilíngue em grande escala. É construído a partir de agências de notícias on-line, com foco no espanhol.
Tamanho do download :
501.27 MiB
Tamanho do conjunto de dados :
1.29 GiB
Armazenado em cache automaticamente ( documentação ): Não
Divisões :
Dividir | Exemplos |
---|---|
'challenge_test_covid' | 1.938 |
'challenge_train_sample' | 500 |
'challenge_validation_sample' | 500 |
'test' | 13.366 |
'train' | 259.888 |
'validation' | 9.977 |
- Estrutura de recursos :
FeaturesDict({
'date': string,
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'target': string,
'text': string,
'title': string,
'topic': string,
'url': string,
})
- Documentação do recurso:
Característica | Classe | Forma | Tipo D | Descrição |
---|---|---|---|---|
RecursosDict | ||||
encontro | tensor | corda | ||
gem_id | tensor | corda | ||
gem_parent_id | tensor | corda | ||
referências | Sequência(Tensor) | (Nenhum,) | corda | |
alvo | tensor | corda | ||
texto | tensor | corda | ||
título | tensor | corda | ||
tema | tensor | corda | ||
url | tensor | corda |
- Exemplos ( tfds.as_dataframe ):
- Citação :
@inproceedings{scialom-etal-2020-mlsum,
title = "{MLSUM}: The Multilingual Summarization Corpus",
author = {Scialom, Thomas and Dray, Paul-Alexis and Lamprier, Sylvain and Piwowarski, Benjamin and Staiano, Jacopo},
booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
year = {2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gem/schema_guided_dialog
Descrição da configuração : O conjunto de dados Schema-Guided Dialogue (SGD) contém 18K de diálogos orientados a tarefas de vários domínios entre um humano e um assistente virtual, que abrange 17 domínios, desde bancos e eventos até mídia, calendário, viagens e clima.
Tamanho do download :
17.00 MiB
Tamanho do conjunto de dados :
201.19 MiB
Cache automático ( documentação ): Sim (challenge_test_backtranslation, challenge_test_bfp02, challenge_test_bfp05, challenge_test_nopunc, challenge_test_scramble, challenge_train_sample, challenge_validation_sample, teste, validação), somente quando
shuffle_files=False
(train)Divisões :
Dividir | Exemplos |
---|---|
'challenge_test_backtranslation' | 500 |
'challenge_test_bfp02' | 500 |
'challenge_test_bfp05' | 500 |
'challenge_test_nopunc' | 500 |
'challenge_test_scramble' | 500 |
'challenge_train_sample' | 500 |
'challenge_validation_sample' | 500 |
'test' | 10.000 |
'train' | 164.982 |
'validation' | 10.000 |
- Estrutura de recursos :
FeaturesDict({
'context': Sequence(string),
'dialog_acts': Sequence({
'act': ClassLabel(shape=(), dtype=int64, num_classes=18),
'slot': string,
'values': Sequence(string),
}),
'dialog_id': string,
'gem_id': string,
'gem_parent_id': string,
'prompt': string,
'references': Sequence(string),
'service': string,
'target': string,
'turn_id': int32,
})
- Documentação do recurso:
Característica | Classe | Forma | Tipo D | Descrição |
---|---|---|---|---|
RecursosDict | ||||
contexto | Sequência(Tensor) | (Nenhum,) | corda | |
dialog_acts | Seqüência | |||
dialog_acts/act | ClassLabel | int64 | ||
dialog_acts/slot | tensor | corda | ||
diálogo_atos/valores | Sequência(Tensor) | (Nenhum,) | corda | |
dialog_id | tensor | corda | ||
gem_id | tensor | corda | ||
gem_parent_id | tensor | corda | ||
pronto | tensor | corda | ||
referências | Sequência(Tensor) | (Nenhum,) | corda | |
serviço | tensor | corda | ||
alvo | tensor | corda | ||
turn_id | tensor | int32 |
- Exemplos ( tfds.as_dataframe ):
- Citação :
@article{rastogi2019towards,
title={Towards Scalable Multi-domain Conversational Agents: The Schema-Guided Dialogue Dataset},
author={Rastogi, Abhinav and Zang, Xiaoxue and Sunkara, Srinivas and Gupta, Raghav and Khaitan, Pranav},
journal={arXiv preprint arXiv:1909.05855},
year={2019}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
joia/totto
Descrição da configuração : ToTTo é uma tarefa NLG Table-to-Text. A tarefa é a seguinte: Dada uma tabela da Wikipédia com nomes de linha, nomes de coluna e células de tabela, com um subconjunto de células destacadas, gere uma descrição em linguagem natural para a parte destacada da tabela.
Tamanho do download :
180.75 MiB
Tamanho do conjunto de dados :
645.86 MiB
Armazenado em cache automaticamente ( documentação ): Não
Divisões :
Dividir | Exemplos |
---|---|
'challenge_test_scramble' | 500 |
'challenge_train_sample' | 500 |
'challenge_validation_sample' | 500 |
'test' | 7.700 |
'train' | 121.153 |
'validation' | 7.700 |
- Estrutura de recursos :
FeaturesDict({
'example_id': string,
'gem_id': string,
'gem_parent_id': string,
'highlighted_cells': Sequence(Sequence(int32)),
'overlap_subset': string,
'references': Sequence(string),
'sentence_annotations': Sequence({
'final_sentence': string,
'original_sentence': string,
'sentence_after_ambiguity': string,
'sentence_after_deletion': string,
}),
'table': Sequence(Sequence({
'column_span': int32,
'is_header': bool,
'row_span': int32,
'value': string,
})),
'table_page_title': string,
'table_section_text': string,
'table_section_title': string,
'table_webpage_url': string,
'target': string,
'totto_id': int32,
})
- Documentação do recurso:
Característica | Classe | Forma | Tipo D | Descrição |
---|---|---|---|---|
RecursosDict | ||||
exemplo_id | tensor | corda | ||
gem_id | tensor | corda | ||
gem_parent_id | tensor | corda | ||
células_destacadas | Sequência(Sequência(Tensor)) | (Nenhuma, Nenhuma) | int32 | |
sobreposição_subconjunto | tensor | corda | ||
referências | Sequência(Tensor) | (Nenhum,) | corda | |
frases_anotações | Seqüência | |||
sentença_anotações/final_sentença | tensor | corda | ||
sentença_anotações/original_sentença | tensor | corda | ||
sentença_annotations/sentence_after_ambiguity | tensor | corda | ||
sentença_annotations/sentence_after_deletion | tensor | corda | ||
tabela | Seqüência | |||
tabela/coluna_span | tensor | int32 | ||
tabela/é_cabeçalho | tensor | bool | ||
table/row_span | tensor | int32 | ||
tabela/valor | tensor | corda | ||
table_page_title | tensor | corda | ||
table_section_text | tensor | corda | ||
table_section_title | tensor | corda | ||
table_webpage_url | tensor | corda | ||
alvo | tensor | corda | ||
totto_id | tensor | int32 |
- Exemplos ( tfds.as_dataframe ):
- Citação :
@inproceedings{parikh2020totto,
title=ToTTo: A Controlled Table-To-Text Generation Dataset,
author={Parikh, Ankur and Wang, Xuezhi and Gehrmann, Sebastian and Faruqui, Manaal and Dhingra, Bhuwan and Yang, Diyi and Das, Dipanjan},
booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
pages={1173--1186},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gem/web_nlg_en
Descrição da configuração : WebNLG é um conjunto de dados bilíngue (inglês, russo) de conjuntos triplos DBpedia paralelos e textos curtos que abrangem cerca de 450 propriedades DBpedia diferentes. Os dados WebNLG foram originalmente criados para promover o desenvolvimento de verbalizadores RDF capazes de gerar textos curtos e lidar com microplanejamento.
Tamanho do download :
12.57 MiB
Tamanho do conjunto de dados :
19.91 MiB
Cache automático ( documentação ): Sim
Divisões :
Dividir | Exemplos |
---|---|
'challenge_test_numbers' | 500 |
'challenge_test_scramble' | 500 |
'challenge_train_sample' | 502 |
'challenge_validation_sample' | 499 |
'test' | 1.779 |
'train' | 35.426 |
'validation' | 1.667 |
- Estrutura de recursos :
FeaturesDict({
'category': string,
'gem_id': string,
'gem_parent_id': string,
'input': Sequence(string),
'references': Sequence(string),
'target': string,
'webnlg_id': string,
})
- Documentação do recurso:
Característica | Classe | Forma | Tipo D | Descrição |
---|---|---|---|---|
RecursosDict | ||||
categoria | tensor | corda | ||
gem_id | tensor | corda | ||
gem_parent_id | tensor | corda | ||
entrada | Sequência(Tensor) | (Nenhum,) | corda | |
referências | Sequência(Tensor) | (Nenhum,) | corda | |
alvo | tensor | corda | ||
webnlg_id | tensor | corda |
- Exemplos ( tfds.as_dataframe ):
- Citação :
@inproceedings{gardent2017creating,
author = "Gardent, Claire
and Shimorina, Anastasia
and Narayan, Shashi
and Perez-Beltrachini, Laura",
title = "Creating Training Corpora for NLG Micro-Planners",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
year = "2017",
publisher = "Association for Computational Linguistics",
pages = "179--188",
location = "Vancouver, Canada",
doi = "10.18653/v1/P17-1017",
url = "http://www.aclweb.org/anthology/P17-1017"
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gem/web_nlg_ru
Descrição da configuração : WebNLG é um conjunto de dados bilíngue (inglês, russo) de conjuntos triplos DBpedia paralelos e textos curtos que abrangem cerca de 450 propriedades DBpedia diferentes. Os dados WebNLG foram originalmente criados para promover o desenvolvimento de verbalizadores RDF capazes de gerar textos curtos e lidar com microplanejamento.
Tamanho do download :
7.49 MiB
Tamanho do conjunto de dados :
11.30 MiB
Cache automático ( documentação ): Sim
Divisões :
Dividir | Exemplos |
---|---|
'challenge_test_scramble' | 500 |
'challenge_train_sample' | 501 |
'challenge_validation_sample' | 500 |
'test' | 1.102 |
'train' | 14.630 |
'validation' | 790 |
- Estrutura de recursos :
FeaturesDict({
'category': string,
'gem_id': string,
'gem_parent_id': string,
'input': Sequence(string),
'references': Sequence(string),
'target': string,
'webnlg_id': string,
})
- Documentação do recurso:
Característica | Classe | Forma | Tipo D | Descrição |
---|---|---|---|---|
RecursosDict | ||||
categoria | tensor | corda | ||
gem_id | tensor | corda | ||
gem_parent_id | tensor | corda | ||
entrada | Sequência(Tensor) | (Nenhum,) | corda | |
referências | Sequência(Tensor) | (Nenhum,) | corda | |
alvo | tensor | corda | ||
webnlg_id | tensor | corda |
- Exemplos ( tfds.as_dataframe ):
- Citação :
@inproceedings{gardent2017creating,
author = "Gardent, Claire
and Shimorina, Anastasia
and Narayan, Shashi
and Perez-Beltrachini, Laura",
title = "Creating Training Corpora for NLG Micro-Planners",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
year = "2017",
publisher = "Association for Computational Linguistics",
pages = "179--188",
location = "Vancouver, Canada",
doi = "10.18653/v1/P17-1017",
url = "http://www.aclweb.org/anthology/P17-1017"
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gem/wiki_auto_asset_turk
Descrição da configuração : WikiAuto fornece um conjunto de sentenças alinhadas da Wikipedia em inglês e da Wikipedia em inglês simples como um recurso para treinar sistemas de simplificação de sentenças. ASSET e TURK são conjuntos de dados de simplificação de alta qualidade usados para testes.
Tamanho do download :
121.01 MiB
Tamanho do conjunto de dados :
202.40 MiB
Auto-cached ( documentation ): Yes (challenge_test_asset_backtranslation, challenge_test_asset_bfp02, challenge_test_asset_bfp05, challenge_test_asset_nopunc, challenge_test_turk_backtranslation, challenge_test_turk_bfp02, challenge_test_turk_bfp05, challenge_test_turk_nopunc, challenge_train_sample, challenge_validation_sample, test_asset, test_turk, validation), Only when
shuffle_files=False
(train)Divisões :
Dividir | Exemplos |
---|---|
'challenge_test_asset_backtranslation' | 359 |
'challenge_test_asset_bfp02' | 359 |
'challenge_test_asset_bfp05' | 359 |
'challenge_test_asset_nopunc' | 359 |
'challenge_test_turk_backtranslation' | 359 |
'challenge_test_turk_bfp02' | 359 |
'challenge_test_turk_bfp05' | 359 |
'challenge_test_turk_nopunc' | 359 |
'challenge_train_sample' | 500 |
'challenge_validation_sample' | 500 |
'test_asset' | 359 |
'test_turk' | 359 |
'train' | 483.801 |
'validation' | 20.000 |
- Estrutura de recursos :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'target': string,
})
- Documentação do recurso:
Característica | Classe | Forma | Tipo D | Descrição |
---|---|---|---|---|
RecursosDict | ||||
gem_id | tensor | corda | ||
gem_parent_id | tensor | corda | ||
referências | Sequência(Tensor) | (Nenhum,) | corda | |
fonte | tensor | corda | ||
alvo | tensor | corda |
- Exemplos ( tfds.as_dataframe ):
- Citação :
@inproceedings{jiang-etal-2020-neural,
title = "Neural {CRF} Model for Sentence Alignment in Text Simplification",
author = "Jiang, Chao and
Maddela, Mounica and
Lan, Wuwei and
Zhong, Yang and
Xu, Wei",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.acl-main.709",
doi = "10.18653/v1/2020.acl-main.709",
pages = "7943--7960",
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gem/xsum
Descrição da configuração : O conjunto de dados é para a tarefa de resumo abstrato em sua forma extrema, trata-se de resumir um documento em uma única frase.
Tamanho do download :
246.31 MiB
Tamanho do conjunto de dados :
78.89 MiB
Cache automático ( documentação ): Sim
Divisões :
Dividir | Exemplos |
---|---|
'challenge_test_backtranslation' | 500 |
'challenge_test_bfp_02' | 500 |
'challenge_test_bfp_05' | 500 |
'challenge_test_covid' | 401 |
'challenge_test_nopunc' | 500 |
'challenge_train_sample' | 500 |
'challenge_validation_sample' | 500 |
'test' | 1.166 |
'train' | 23.206 |
'validation' | 1.117 |
- Estrutura de recursos :
FeaturesDict({
'document': string,
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'target': string,
'xsum_id': string,
})
- Documentação do recurso:
Característica | Classe | Forma | Tipo D | Descrição |
---|---|---|---|---|
RecursosDict | ||||
documento | tensor | corda | ||
gem_id | tensor | corda | ||
gem_parent_id | tensor | corda | ||
referências | Sequência(Tensor) | (Nenhum,) | corda | |
alvo | tensor | corda | ||
xsum_id | tensor | corda |
- Exemplos ( tfds.as_dataframe ):
- Citação :
@inproceedings{Narayan2018dont,
author = "Shashi Narayan and Shay B. Cohen and Mirella Lapata",
title = "Don't Give Me the Details, Just the Summary! {T}opic-Aware Convolutional Neural Networks for Extreme Summarization",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing ",
year = "2018",
address = "Brussels, Belgium",
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gem/wiki_lingua_arabic_ar
Descrição da configuração : Wikilingua é um conjunto de dados multilíngue em larga escala para a avaliação de sistemas de sumarização abstrativos multilíngues.
Tamanho do download :
56.25 MiB
Tamanho do conjunto de dados :
291.42 MiB
Armazenado em cache automaticamente ( documentação ): Não
Divisões :
Dividir | Exemplos |
---|---|
'test' | 5.841 |
'train' | 20.441 |
'validation' | 2.919 |
- Estrutura de recursos :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'ar': Text(shape=(), dtype=string),
'en': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'ar': Text(shape=(), dtype=string),
'en': Text(shape=(), dtype=string),
}),
})
- Documentação do recurso:
Característica | Classe | Forma | Tipo D | Descrição |
---|---|---|---|---|
RecursosDict | ||||
gem_id | tensor | corda | ||
gem_parent_id | tensor | corda | ||
referências | Sequência(Tensor) | (Nenhum,) | corda | |
fonte | tensor | corda | ||
source_aligned | Tradução | |||
source_aligned/ar | Texto | corda | ||
source_aligned/en | Texto | corda | ||
alvo | tensor | corda | ||
target_aligned | Tradução | |||
target_aligned/ar | Texto | corda | ||
target_aligned/en | Texto | corda |
- Exemplos ( tfds.as_dataframe ):
- Citação :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gem/wiki_lingua_chinese_zh
Descrição da configuração : Wikilingua é um conjunto de dados multilíngue em larga escala para a avaliação de sistemas de sumarização abstrativos multilíngues.
Tamanho do download :
31.38 MiB
Tamanho do conjunto de dados :
122.06 MiB
Cache automático ( documentação ): Sim
Divisões :
Dividir | Exemplos |
---|---|
'test' | 3.775 |
'train' | 13.211 |
'validation' | 1.886 |
- Estrutura de recursos :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'zh': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'zh': Text(shape=(), dtype=string),
}),
})
- Documentação do recurso:
Característica | Classe | Forma | Tipo D | Descrição |
---|---|---|---|---|
RecursosDict | ||||
gem_id | tensor | corda | ||
gem_parent_id | tensor | corda | ||
referências | Sequência(Tensor) | (Nenhum,) | corda | |
fonte | tensor | corda | ||
source_aligned | Tradução | |||
source_aligned/en | Texto | corda | ||
source_aligned/zh | Texto | corda | ||
alvo | tensor | corda | ||
target_aligned | Tradução | |||
target_aligned/en | Texto | corda | ||
target_aligned/zh | Texto | corda |
- Exemplos ( tfds.as_dataframe ):
- Citação :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gem/wiki_lingua_czech_cs
Descrição da configuração : Wikilingua é um conjunto de dados multilíngue em larga escala para a avaliação de sistemas de sumarização abstrativos multilíngues.
Tamanho do download :
13.84 MiB
Tamanho do conjunto de dados :
58.05 MiB
Cache automático ( documentação ): Sim
Divisões :
Dividir | Exemplos |
---|---|
'test' | 1.438 |
'train' | 5.033 |
'validation' | 718 |
- Estrutura de recursos :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'cs': Text(shape=(), dtype=string),
'en': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'cs': Text(shape=(), dtype=string),
'en': Text(shape=(), dtype=string),
}),
})
- Documentação do recurso:
Característica | Classe | Forma | Tipo D | Descrição |
---|---|---|---|---|
RecursosDict | ||||
gem_id | tensor | corda | ||
gem_parent_id | tensor | corda | ||
referências | Sequência(Tensor) | (Nenhum,) | corda | |
fonte | tensor | corda | ||
source_aligned | Tradução | |||
source_aligned/cs | Texto | corda | ||
source_aligned/en | Texto | corda | ||
alvo | tensor | corda | ||
target_aligned | Tradução | |||
target_aligned/cs | Texto | corda | ||
target_aligned/en | Texto | corda |
- Exemplos ( tfds.as_dataframe ):
- Citação :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gem/wiki_lingua_dutch_nl
Descrição da configuração : Wikilingua é um conjunto de dados multilíngue em larga escala para a avaliação de sistemas de sumarização abstrativos multilíngues.
Tamanho do download :
53.88 MiB
Tamanho do conjunto de dados :
237.97 MiB
Cache automático ( documentação ): Sim (teste, validação), somente quando
shuffle_files=False
(train)Divisões :
Dividir | Exemplos |
---|---|
'test' | 6.248 |
'train' | 21.866 |
'validation' | 3.123 |
- Estrutura de recursos :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'nl': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'nl': Text(shape=(), dtype=string),
}),
})
- Documentação do recurso:
Característica | Classe | Forma | Tipo D | Descrição |
---|---|---|---|---|
RecursosDict | ||||
gem_id | tensor | corda | ||
gem_parent_id | tensor | corda | ||
referências | Sequência(Tensor) | (Nenhum,) | corda | |
fonte | tensor | corda | ||
source_aligned | Tradução | |||
source_aligned/en | Texto | corda | ||
source_aligned/nl | Texto | corda | ||
alvo | tensor | corda | ||
target_aligned | Tradução | |||
target_aligned/en | Texto | corda | ||
target_aligned/nl | Texto | corda |
- Exemplos ( tfds.as_dataframe ):
- Citação :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gem/wiki_lingua_english_en
Descrição da configuração : Wikilingua é um conjunto de dados multilíngue em larga escala para a avaliação de sistemas de sumarização abstrativos multilíngues.
Tamanho do download :
112.56 MiB
Tamanho do conjunto de dados :
657.51 MiB
Armazenado em cache automaticamente ( documentação ): Não
Divisões :
Dividir | Exemplos |
---|---|
'test' | 28.614 |
'train' | 99.020 |
'validation' | 13.823 |
- Estrutura de recursos :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
}),
})
- Documentação do recurso:
Característica | Classe | Forma | Tipo D | Descrição |
---|---|---|---|---|
RecursosDict | ||||
gem_id | tensor | corda | ||
gem_parent_id | tensor | corda | ||
referências | Sequência(Tensor) | (Nenhum,) | corda | |
fonte | tensor | corda | ||
source_aligned | Tradução | |||
source_aligned/en | Texto | corda | ||
alvo | tensor | corda | ||
target_aligned | Tradução | |||
target_aligned/en | Texto | corda |
- Exemplos ( tfds.as_dataframe ):
- Citação :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gem/wiki_lingua_french_fr
Descrição da configuração : Wikilingua é um conjunto de dados multilíngue em larga escala para a avaliação de sistemas de sumarização abstrativos multilíngues.
Tamanho do download :
113.26 MiB
Tamanho do conjunto de dados :
522.28 MiB
Armazenado em cache automaticamente ( documentação ): Não
Divisões :
Dividir | Exemplos |
---|---|
'test' | 12.731 |
'train' | 44.556 |
'validation' | 6.364 |
- Estrutura de recursos :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'fr': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'fr': Text(shape=(), dtype=string),
}),
})
- Documentação do recurso:
Característica | Classe | Forma | Tipo D | Descrição |
---|---|---|---|---|
RecursosDict | ||||
gem_id | tensor | corda | ||
gem_parent_id | tensor | corda | ||
referências | Sequência(Tensor) | (Nenhum,) | corda | |
fonte | tensor | corda | ||
source_aligned | Tradução | |||
source_aligned/en | Texto | corda | ||
source_aligned/fr | Texto | corda | ||
alvo | tensor | corda | ||
target_aligned | Tradução | |||
target_aligned/en | Texto | corda | ||
target_aligned/fr | Texto | corda |
- Exemplos ( tfds.as_dataframe ):
- Citação :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gem/wiki_lingua_german_de
Descrição da configuração : Wikilingua é um conjunto de dados multilíngue em larga escala para a avaliação de sistemas de sumarização abstrativos multilíngues.
Tamanho do download :
102.65 MiB
Tamanho do conjunto de dados :
452.46 MiB
Armazenado em cache automaticamente ( documentação ): Não
Divisões :
Dividir | Exemplos |
---|---|
'test' | 11.669 |
'train' | 40.839 |
'validation' | 5.833 |
- Estrutura de recursos :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'de': Text(shape=(), dtype=string),
'en': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'de': Text(shape=(), dtype=string),
'en': Text(shape=(), dtype=string),
}),
})
- Documentação do recurso:
Característica | Classe | Forma | Tipo D | Descrição |
---|---|---|---|---|
RecursosDict | ||||
gem_id | tensor | corda | ||
gem_parent_id | tensor | corda | ||
referências | Sequência(Tensor) | (Nenhum,) | corda | |
fonte | tensor | corda | ||
source_aligned | Tradução | |||
source_aligned/de | Texto | corda | ||
source_aligned/en | Texto | corda | ||
alvo | tensor | corda | ||
target_aligned | Tradução | |||
target_aligned/de | Texto | corda | ||
target_aligned/en | Texto | corda |
- Exemplos ( tfds.as_dataframe ):
- Citação :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gem/wiki_lingua_hindi_hi
Descrição da configuração : Wikilingua é um conjunto de dados multilíngue em larga escala para a avaliação de sistemas de sumarização abstrativos multilíngues.
Tamanho do download :
20.07 MiB
Tamanho do conjunto de dados :
138.06 MiB
Cache automático ( documentação ): Sim
Divisões :
Dividir | Exemplos |
---|---|
'test' | 1.984 |
'train' | 6.942 |
'validation' | 991 |
- Estrutura de recursos :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'hi': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'hi': Text(shape=(), dtype=string),
}),
})
- Documentação do recurso:
Característica | Classe | Forma | Tipo D | Descrição |
---|---|---|---|---|
RecursosDict | ||||
gem_id | tensor | corda | ||
gem_parent_id | tensor | corda | ||
referências | Sequência(Tensor) | (Nenhum,) | corda | |
fonte | tensor | corda | ||
source_aligned | Tradução | |||
source_aligned/en | Texto | corda | ||
source_aligned/oi | Texto | corda | ||
alvo | tensor | corda | ||
target_aligned | Tradução | |||
target_aligned/en | Texto | corda | ||
target_aligned/oi | Texto | corda |
- Exemplos ( tfds.as_dataframe ):
- Citação :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gem/wiki_lingua_indonesian_id
Descrição da configuração : Wikilingua é um conjunto de dados multilíngue em larga escala para a avaliação de sistemas de sumarização abstrativos multilíngues.
Tamanho do download :
80.08 MiB
Tamanho do conjunto de dados :
370.63 MiB
Armazenado em cache automaticamente ( documentação ): Não
Divisões :
Dividir | Exemplos |
---|---|
'test' | 9.497 |
'train' | 33.237 |
'validation' | 4.747 |
- Estrutura de recursos :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'id': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'id': Text(shape=(), dtype=string),
}),
})
- Documentação do recurso:
Característica | Classe | Forma | Tipo D | Descrição |
---|---|---|---|---|
RecursosDict | ||||
gem_id | tensor | corda | ||
gem_parent_id | tensor | corda | ||
referências | Sequência(Tensor) | (Nenhum,) | corda | |
fonte | tensor | corda | ||
source_aligned | Tradução | |||
source_aligned/en | Texto | corda | ||
source_aligned/id | Texto | corda | ||
alvo | tensor | corda | ||
target_aligned | Tradução | |||
target_aligned/en | Texto | corda | ||
target_aligned/id | Texto | corda |
- Exemplos ( tfds.as_dataframe ):
- Citação :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gem/wiki_lingua_italian_it
Descrição da configuração : Wikilingua é um conjunto de dados multilíngue em larga escala para a avaliação de sistemas de sumarização abstrativos multilíngues.
Tamanho do download :
84.80 MiB
Tamanho do conjunto de dados :
374.40 MiB
Armazenado em cache automaticamente ( documentação ): Não
Divisões :
Dividir | Exemplos |
---|---|
'test' | 10.189 |
'train' | 35.661 |
'validation' | 5.093 |
- Estrutura de recursos :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'it': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'it': Text(shape=(), dtype=string),
}),
})
- Documentação do recurso:
Característica | Classe | Forma | Tipo D | Descrição |
---|---|---|---|---|
RecursosDict | ||||
gem_id | tensor | corda | ||
gem_parent_id | tensor | corda | ||
referências | Sequência(Tensor) | (Nenhum,) | corda | |
fonte | tensor | corda | ||
source_aligned | Tradução | |||
source_aligned/en | Texto | corda | ||
source_aligned/it | Texto | corda | ||
alvo | tensor | corda | ||
target_aligned | Tradução | |||
target_aligned/en | Texto | corda | ||
target_aligned/it | Texto | corda |
- Exemplos ( tfds.as_dataframe ):
- Citação :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gem/wiki_lingua_japanese_ja
Descrição da configuração : Wikilingua é um conjunto de dados multilíngue em larga escala para a avaliação de sistemas de sumarização abstrativos multilíngues.
Tamanho do download :
21.75 MiB
Tamanho do conjunto de dados :
103.19 MiB
Cache automático ( documentação ): Sim
Divisões :
Dividir | Exemplos |
---|---|
'test' | 2.530 |
'train' | 8.853 |
'validation' | 1.264 |
- Estrutura de recursos :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'ja': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'ja': Text(shape=(), dtype=string),
}),
})
- Documentação do recurso:
Característica | Classe | Forma | Tipo D | Descrição |
---|---|---|---|---|
RecursosDict | ||||
gem_id | tensor | corda | ||
gem_parent_id | tensor | corda | ||
referências | Sequência(Tensor) | (Nenhum,) | corda | |
fonte | tensor | corda | ||
source_aligned | Tradução | |||
source_aligned/en | Texto | corda | ||
source_aligned/ja | Texto | corda | ||
alvo | tensor | corda | ||
target_aligned | Tradução | |||
target_aligned/en | Texto | corda | ||
target_aligned/ja | Texto | corda |
- Exemplos ( tfds.as_dataframe ):
- Citação :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gem/wiki_lingua_korean_ko
Descrição da configuração : Wikilingua é um conjunto de dados multilíngue em larga escala para a avaliação de sistemas de sumarização abstrativos multilíngues.
Tamanho do download :
22.26 MiB
Tamanho do conjunto de dados :
102.35 MiB
Cache automático ( documentação ): Sim
Divisões :
Dividir | Exemplos |
---|---|
'test' | 2.436 |
'train' | 8.524 |
'validation' | 1.216 |
- Estrutura de recursos :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'ko': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'ko': Text(shape=(), dtype=string),
}),
})
- Documentação do recurso:
Característica | Classe | Forma | Tipo D | Descrição |
---|---|---|---|---|
RecursosDict | ||||
gem_id | tensor | corda | ||
gem_parent_id | tensor | corda | ||
referências | Sequência(Tensor) | (Nenhum,) | corda | |
fonte | tensor | corda | ||
source_aligned | Tradução | |||
source_aligned/en | Texto | corda | ||
source_aligned/ko | Texto | corda | ||
alvo | tensor | corda | ||
target_aligned | Tradução | |||
target_aligned/en | Texto | corda | ||
target_aligned/ko | Texto | corda |
- Exemplos ( tfds.as_dataframe ):
- Citação :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gem/wiki_lingua_portuguese_pt
Descrição da configuração : Wikilingua é um conjunto de dados multilíngue em larga escala para a avaliação de sistemas de sumarização abstrativos multilíngues.
Tamanho do download :
131.17 MiB
Tamanho do conjunto de dados :
570.46 MiB
Armazenado em cache automaticamente ( documentação ): Não
Divisões :
Dividir | Exemplos |
---|---|
'test' | 16.331 |
'train' | 57.159 |
'validation' | 8.165 |
- Estrutura de recursos :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'pt': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'pt': Text(shape=(), dtype=string),
}),
})
- Documentação do recurso:
Característica | Classe | Forma | Tipo D | Descrição |
---|---|---|---|---|
RecursosDict | ||||
gem_id | tensor | corda | ||
gem_parent_id | tensor | corda | ||
referências | Sequência(Tensor) | (Nenhum,) | corda | |
fonte | tensor | corda | ||
source_aligned | Tradução | |||
source_aligned/en | Texto | corda | ||
source_aligned/pt | Texto | corda | ||
alvo | tensor | corda | ||
target_aligned | Tradução | |||
target_aligned/en | Texto | corda | ||
target_aligned/pt | Texto | corda |
- Exemplos ( tfds.as_dataframe ):
- Citação :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gem/wiki_lingua_russian_ru
Descrição da configuração : Wikilingua é um conjunto de dados multilíngue em larga escala para a avaliação de sistemas de sumarização abstrativos multilíngues.
Tamanho do download :
101.36 MiB
Tamanho do conjunto de dados :
564.69 MiB
Armazenado em cache automaticamente ( documentação ): Não
Divisões :
Dividir | Exemplos |
---|---|
'test' | 10.580 |
'train' | 37.028 |
'validation' | 5.288 |
- Estrutura de recursos :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'ru': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'ru': Text(shape=(), dtype=string),
}),
})
- Documentação do recurso:
Característica | Classe | Forma | Tipo D | Descrição |
---|---|---|---|---|
RecursosDict | ||||
gem_id | tensor | corda | ||
gem_parent_id | tensor | corda | ||
referências | Sequência(Tensor) | (Nenhum,) | corda | |
fonte | tensor | corda | ||
source_aligned | Tradução | |||
source_aligned/en | Texto | corda | ||
source_aligned/ru | Texto | corda | ||
alvo | tensor | corda | ||
target_aligned | Tradução | |||
target_aligned/en | Texto | corda | ||
target_aligned/ru | Texto | corda |
- Exemplos ( tfds.as_dataframe ):
- Citação :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gem/wiki_lingua_spanish_es
Descrição da configuração : Wikilingua é um conjunto de dados multilíngue em larga escala para a avaliação de sistemas de sumarização abstrativos multilíngues.
Tamanho do download :
189.06 MiB
Tamanho do conjunto de dados :
849.75 MiB
Armazenado em cache automaticamente ( documentação ): Não
Divisões :
Dividir | Exemplos |
---|---|
'test' | 22.632 |
'train' | 79.212 |
'validation' | 11.316 |
- Estrutura de recursos :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'es': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'es': Text(shape=(), dtype=string),
}),
})
- Documentação do recurso:
Característica | Classe | Forma | Tipo D | Descrição |
---|---|---|---|---|
RecursosDict | ||||
gem_id | tensor | corda | ||
gem_parent_id | tensor | corda | ||
referências | Sequência(Tensor) | (Nenhum,) | corda | |
fonte | tensor | corda | ||
source_aligned | Tradução | |||
source_aligned/en | Texto | corda | ||
source_aligned/es | Texto | corda | ||
alvo | tensor | corda | ||
target_aligned | Tradução | |||
target_aligned/en | Texto | corda | ||
target_aligned/es | Texto | corda |
- Exemplos ( tfds.as_dataframe ):
- Citação :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gem/wiki_lingua_thai_th
Descrição da configuração : Wikilingua é um conjunto de dados multilíngue em larga escala para a avaliação de sistemas de sumarização abstrativos multilíngues.
Tamanho do download :
28.60 MiB
Tamanho do conjunto de dados :
193.77 MiB
Cache automático ( documentação ): Sim (teste, validação), somente quando
shuffle_files=False
(train)Divisões :
Dividir | Exemplos |
---|---|
'test' | 2.950 |
'train' | 10.325 |
'validation' | 1.475 |
- Estrutura de recursos :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'th': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'th': Text(shape=(), dtype=string),
}),
})
- Documentação do recurso:
Característica | Classe | Forma | Tipo D | Descrição |
---|---|---|---|---|
RecursosDict | ||||
gem_id | tensor | corda | ||
gem_parent_id | tensor | corda | ||
referências | Sequência(Tensor) | (Nenhum,) | corda | |
fonte | tensor | corda | ||
source_aligned | Tradução | |||
source_aligned/en | Texto | corda | ||
source_aligned/th | Texto | corda | ||
alvo | tensor | corda | ||
target_aligned | Tradução | |||
target_aligned/en | Texto | corda | ||
target_aligned/th | Texto | corda |
- Exemplos ( tfds.as_dataframe ):
- Citação :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gem/wiki_lingua_turkish_tr
Descrição da configuração : Wikilingua é um conjunto de dados multilíngue em larga escala para a avaliação de sistemas de sumarização abstrativos multilíngues.
Tamanho do download :
6.73 MiB
Tamanho do conjunto de dados :
30.75 MiB
Cache automático ( documentação ): Sim
Divisões :
Dividir | Exemplos |
---|---|
'test' | 900 |
'train' | 3.148 |
'validation' | 449 |
- Estrutura de recursos :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'tr': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'tr': Text(shape=(), dtype=string),
}),
})
- Documentação do recurso:
Característica | Classe | Forma | Tipo D | Descrição |
---|---|---|---|---|
RecursosDict | ||||
gem_id | tensor | corda | ||
gem_parent_id | tensor | corda | ||
referências | Sequência(Tensor) | (Nenhum,) | corda | |
fonte | tensor | corda | ||
source_aligned | Tradução | |||
source_aligned/en | Texto | corda | ||
source_aligned/tr | Texto | corda | ||
alvo | tensor | corda | ||
target_aligned | Tradução | |||
target_aligned/en | Texto | corda | ||
target_aligned/tr | Texto | corda |
- Exemplos ( tfds.as_dataframe ):
- Citação :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."
gem/wiki_lingua_vietnamese_vi
Descrição da configuração : Wikilingua é um conjunto de dados multilíngue em larga escala para a avaliação de sistemas de sumarização abstrativos multilíngues.
Tamanho do download :
36.27 MiB
Tamanho do conjunto de dados :
179.77 MiB
Cache automático ( documentação ): Sim
Divisões :
Dividir | Exemplos |
---|---|
'test' | 3.917 |
'train' | 13.707 |
'validation' | 1.957 |
- Estrutura de recursos :
FeaturesDict({
'gem_id': string,
'gem_parent_id': string,
'references': Sequence(string),
'source': string,
'source_aligned': Translation({
'en': Text(shape=(), dtype=string),
'vi': Text(shape=(), dtype=string),
}),
'target': string,
'target_aligned': Translation({
'en': Text(shape=(), dtype=string),
'vi': Text(shape=(), dtype=string),
}),
})
- Documentação do recurso:
Característica | Classe | Forma | Tipo D | Descrição |
---|---|---|---|---|
RecursosDict | ||||
gem_id | tensor | corda | ||
gem_parent_id | tensor | corda | ||
referências | Sequência(Tensor) | (Nenhum,) | corda | |
fonte | tensor | corda | ||
source_aligned | Tradução | |||
source_aligned/en | Texto | corda | ||
source_aligned/vi | Texto | corda | ||
alvo | tensor | corda | ||
target_aligned | Tradução | |||
target_aligned/en | Texto | corda | ||
target_aligned/vi | Texto | corda |
- Exemplos ( tfds.as_dataframe ):
- Citação :
@inproceedings{ladhak-wiki-2020,
title=WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization,
author={Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
booktitle={Findings of EMNLP, 2020},
year={2020}
}
@article{gehrmann2021gem,
author = {Sebastian Gehrmann and
Tosin P. Adewumi and
Karmanya Aggarwal and
Pawan Sasanka Ammanamanchi and
Aremu Anuoluwapo and
Antoine Bosselut and
Khyathi Raghavi Chandu and
Miruna{-}Adriana Clinciu and
Dipanjan Das and
Kaustubh D. Dhole and
Wanyu Du and
Esin Durmus and
Ondrej Dusek and
Chris Emezue and
Varun Gangal and
Cristina Garbacea and
Tatsunori Hashimoto and
Yufang Hou and
Yacine Jernite and
Harsh Jhamtani and
Yangfeng Ji and
Shailza Jolly and
Dhruv Kumar and
Faisal Ladhak and
Aman Madaan and
Mounica Maddela and
Khyati Mahajan and
Saad Mahamood and
Bodhisattwa Prasad Majumder and
Pedro Henrique Martins and
Angelina McMillan{-}Major and
Simon Mille and
Emiel van Miltenburg and
Moin Nadeem and
Shashi Narayan and
Vitaly Nikolaev and
Rubungo Andre Niyongabo and
Salomey Osei and
Ankur P. Parikh and
Laura Perez{-}Beltrachini and
Niranjan Ramesh Rao and
Vikas Raunak and
Juan Diego Rodriguez and
Sashank Santhanam and
Jo{\~{a} }o Sedoc and
Thibault Sellam and
Samira Shaikh and
Anastasia Shimorina and
Marco Antonio Sobrevilla Cabezudo and
Hendrik Strobelt and
Nishant Subramani and
Wei Xu and
Diyi Yang and
Akhila Yerukola and
Jiawei Zhou},
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
Metrics},
journal = {CoRR},
volume = {abs/2102.01672},
year = {2021},
url = {https://arxiv.org/abs/2102.01672},
archivePrefix = {arXiv},
eprint = {2102.01672}
}
Note that each GEM dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."