Join TensorFlow at Google I/O, May 11-12 Register now

snli

  • Description:

The SNLI corpus (version 1.0) is a collection of 570k human-written English sentence pairs manually labeled for balanced classification with the labels entailment, contradiction, and neutral, supporting the task of natural language inference (NLI), also known as recognizing textual entailment (RTE).

Split Examples
'test' 10,000
'train' 550,152
'validation' 10,000
  • Feature structure:
FeaturesDict({
    'hypothesis': Text(shape=(), dtype=tf.string),
    'label': ClassLabel(shape=(), dtype=tf.int64, num_classes=3),
    'premise': Text(shape=(), dtype=tf.string),
})
  • Feature documentation:
Feature Class Shape Dtype Description
FeaturesDict
hypothesis Text tf.string
label ClassLabel tf.int64
premise Text tf.string
  • Citation:
@inproceedings{snli:emnlp2015,
    Author = {Bowman, Samuel R. and Angeli, Gabor and Potts, Christopher, and Manning, Christopher D.},
    Booktitle = {Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
    Publisher = {Association for Computational Linguistics},
    Title = {A large annotated corpus for learning natural language inference},
    Year = {2015}
}