• Description:

xArm picking and placing objects with distractors

Split Examples
'train' 1,355
  • Feature structure:
    'episode_metadata': FeaturesDict({
        'disclaimer': Text(shape=(), dtype=string),
        'file_path': Text(shape=(), dtype=string),
        'n_transitions': Scalar(shape=(), dtype=int32),
        'success': Scalar(shape=(), dtype=bool),
        'success_labeled_by': Text(shape=(), dtype=string),
    'steps': Dataset({
        'action': Tensor(shape=(4,), dtype=float32),
        'discount': Scalar(shape=(), dtype=float32),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'language_embedding': Tensor(shape=(512,), dtype=float32),
        'language_instruction': Text(shape=(), dtype=string),
        'observation': FeaturesDict({
            'image': Image(shape=(224, 224, 3), dtype=uint8),
            'state': Tensor(shape=(7,), dtype=float32),
        'reward': Scalar(shape=(), dtype=float32),
  • Feature documentation:
Feature Class Shape Dtype Description
episode_metadata FeaturesDict
episode_metadata/disclaimer Text string Disclaimer about the particular episode.
episode_metadata/file_path Text string Path to the original data file.
episode_metadata/n_transitions Scalar int32 Number of transitions in the episode.
episode_metadata/success Scalar bool True if the last state of an episode is a success state, False otherwise.
episode_metadata/success_labeled_by Text string Who labeled success (and thereby reward) of the episode. Can be one of: [human, classifier].
steps Dataset
steps/action Tensor (4,) float32 Robot action, consists of [3x gripper velocities,1x gripper open/close torque].
steps/discount Scalar float32 Discount if provided, default to 1.
steps/is_first Tensor bool
steps/is_last Tensor bool
steps/is_terminal Tensor bool
steps/language_embedding Tensor (512,) float32 Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5
steps/language_instruction Text string Language Instruction.
steps/observation FeaturesDict
steps/observation/image Image (224, 224, 3) uint8 Camera RGB observation.
steps/observation/state Tensor (7,) float32 Robot state, consists of [3x gripper position,3x gripper orientation, 1x finger distance].
steps/reward Scalar float32 Reward if provided, 1 on final step for demos.
    title={Finetuning Offline World Models in the Real World},
    author={Yunhai Feng, Nicklas Hansen, Ziyan Xiong, Chandramouli Rajagopalan, Xiaolong Wang},