- Description:
Franka cloth interaction tasks
Homepage: https://uscresl.github.io/dmfd/
Source code:
tfds.robotics.rtx.UscClothSimConvertedExternallyToRlds
Versions:
0.1.0
(default): Initial release.
Download size:
Unknown size
Dataset size:
254.52 MiB
Auto-cached (documentation): No
Splits:
Split | Examples |
---|---|
'train' |
800 |
'val' |
200 |
- Feature structure:
FeaturesDict({
'episode_metadata': FeaturesDict({
'file_path': Text(shape=(), dtype=string),
}),
'steps': Dataset({
'action': Tensor(shape=(4,), dtype=float32, description=Robot action, consists of x,y,z goal and picker commandpicker<0.5 = open, picker>0.5 = close.),
'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
'language_instruction': Text(shape=(), dtype=string),
'observation': FeaturesDict({
'image': Image(shape=(32, 32, 3), dtype=uint8, description=Image observation of cloth.),
}),
'reward': Scalar(shape=(), dtype=float32, description=Reward as a normalized performance metric in [0, 1].0 = no change from initial state. 1 = perfect fold.-ve performance means the cloth is worse off than initial state.),
}),
})
- Feature documentation:
Feature | Class | Shape | Dtype | Description |
---|---|---|---|---|
FeaturesDict | ||||
episode_metadata | FeaturesDict | |||
episode_metadata/file_path | Text | string | Path to the original data file. | |
steps | Dataset | |||
steps/action | Tensor | (4,) | float32 | Robot action, consists of x,y,z goal and picker commandpicker<0.5 = open, picker>0.5 = close. |
steps/discount | Scalar | float32 | Discount if provided, default to 1. | |
steps/is_first | Tensor | bool | ||
steps/is_last | Tensor | bool | ||
steps/is_terminal | Tensor | bool | ||
steps/language_embedding | Tensor | (512,) | float32 | Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5 |
steps/language_instruction | Text | string | Language Instruction. | |
steps/observation | FeaturesDict | |||
steps/observation/image | Image | (32, 32, 3) | uint8 | Image observation of cloth. |
steps/reward | Scalar | float32 | Reward as a normalized performance metric in [0, 1].0 = no change from initial state. 1 = perfect fold.-ve performance means the cloth is worse off than initial state. |
Supervised keys (See
as_supervised
doc):None
Figure (tfds.show_examples): Not supported.
Examples (tfds.as_dataframe): Missing.
Citation:
@article{salhotra2022dmfd,
author={Salhotra, Gautam and Liu, I-Chun Arthur and Dominguez-Kuhne, Marcus and Sukhatme, Gaurav S.},
journal={IEEE Robotics and Automation Letters},
title={Learning Deformable Object Manipulation From Expert Demonstrations},
year={2022},
volume={7},
number={4},
pages={8775-8782},
doi={10.1109/LRA.2022.3187843}
}