- Description:
A large-scale dataset of math word problems and an interpretable neural math problem solver that learns to map problems to operation programs.
Additional Documentation: Explore on Papers With Code
Homepage: https://math-qa.github.io/
Source code:
tfds.datasets.math_qa.BuilderVersions:
1.0.0(default): Initial release.
Download size:
6.96 MiBDataset size:
27.15 MiBAuto-cached (documentation): Yes
Splits:
| Split | Examples |
|---|---|
'test' |
2,985 |
'train' |
29,837 |
'validation' |
4,475 |
- Feature structure:
FeaturesDict({
'Problem': Text(shape=(), dtype=string),
'Rationale': Text(shape=(), dtype=string),
'annotated_formula': Text(shape=(), dtype=string),
'category': Text(shape=(), dtype=string),
'correct': Text(shape=(), dtype=string),
'correct_option': Text(shape=(), dtype=string),
'linear_formula': Text(shape=(), dtype=string),
'options': Text(shape=(), dtype=string),
})
- Feature documentation:
| Feature | Class | Shape | Dtype | Description |
|---|---|---|---|---|
| FeaturesDict | ||||
| Problem | Text | string | ||
| Rationale | Text | string | ||
| annotated_formula | Text | string | ||
| category | Text | string | ||
| correct | Text | string | ||
| correct_option | Text | string | ||
| linear_formula | Text | string | ||
| options | Text | string |
Supervised keys (See
as_superviseddoc):NoneFigure (tfds.show_examples): Not supported.
Examples (tfds.as_dataframe):
- Citation:
@misc{amini2019mathqa,
title={MathQA: Towards Interpretable Math Word Problem Solving with Operation-Based Formalisms},
author={Aida Amini and Saadia Gabriel and Peter Lin and Rik Koncel-Kedziorski and Yejin Choi and Hannaneh Hajishirzi},
year={2019},
eprint={1905.13319},
archivePrefix={arXiv},
primaryClass={cs.CL}
}