• Description:

Diverse household manipulation tasks

Split Examples
'train' 1,500
  • Feature structure:
    'episode_metadata': FeaturesDict({
        'file_path': Text(shape=(), dtype=string),
    'steps': Dataset({
        'action': Tensor(shape=(7,), dtype=float32),
        'discount': Scalar(shape=(), dtype=float32),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'language_embedding': Tensor(shape=(512,), dtype=float32),
        'language_instruction': Text(shape=(), dtype=string),
        'observation': FeaturesDict({
            'image': Image(shape=(128, 128, 3), dtype=uint8),
            'state': Tensor(shape=(24,), dtype=float32),
            'wrist_image': Image(shape=(128, 128, 3), dtype=uint8),
        'reward': Scalar(shape=(), dtype=float32),
  • Feature documentation:
Feature Class Shape Dtype Description
episode_metadata FeaturesDict
episode_metadata/file_path Text string Path to the original data file.
steps Dataset
steps/action Tensor (7,) float32 Robot action, consists of [6x end effector delta pose, 1x gripper position]
steps/discount Scalar float32 Discount if provided, default to 1.
steps/is_first Tensor bool
steps/is_last Tensor bool
steps/is_terminal Tensor bool
steps/language_embedding Tensor (512,) float32 Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5
steps/language_instruction Text string Detailed Language Instructions for each task.
steps/observation FeaturesDict
steps/observation/image Image (128, 128, 3) uint8 Main camera RGB observation.
steps/observation/state Tensor (24,) float32 Robot state, consists of [7x robot joint angles, 1x gripper position, 16x robot end-effector homogeneous matrix].
steps/observation/wrist_image Image (128, 128, 3) uint8 Wrist camera RGB observation.
steps/reward Scalar float32 Reward if provided, 1 on final step for demos.
    title={ {MUTEX}: Learning Unified Policies from Multimodal Task Specifications},
    author={Rutav Shah and Roberto Mart{\'\i}n-Mart{\'\i}n and Yuke Zhu},
    booktitle={7th Annual Conference on Robot Learning},