- Description:
Diverse household manipulation tasks
Homepage: https://ut-austin-rpl.github.io/MUTEX/
Source code:
tfds.robotics.rtx.UtaustinMutexVersions:
0.1.0(default): Initial release.
Download size:
Unknown sizeDataset size:
20.79 GiBAuto-cached (documentation): No
Splits:
| Split | Examples |
|---|---|
'train' |
1,500 |
- Feature structure:
FeaturesDict({
'episode_metadata': FeaturesDict({
'file_path': Text(shape=(), dtype=string),
}),
'steps': Dataset({
'action': Tensor(shape=(7,), dtype=float32, description=Robot action, consists of [6x end effector delta pose, 1x gripper position]),
'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
'language_instruction': Text(shape=(), dtype=string),
'observation': FeaturesDict({
'image': Image(shape=(128, 128, 3), dtype=uint8, description=Main camera RGB observation.),
'state': Tensor(shape=(24,), dtype=float32, description=Robot state, consists of [7x robot joint angles, 1x gripper position, 16x robot end-effector homogeneous matrix].),
'wrist_image': Image(shape=(128, 128, 3), dtype=uint8, description=Wrist camera RGB observation.),
}),
'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
}),
})
- Feature documentation:
| Feature | Class | Shape | Dtype | Description |
|---|---|---|---|---|
| FeaturesDict | ||||
| episode_metadata | FeaturesDict | |||
| episode_metadata/file_path | Text | string | Path to the original data file. | |
| steps | Dataset | |||
| steps/action | Tensor | (7,) | float32 | Robot action, consists of [6x end effector delta pose, 1x gripper position] |
| steps/discount | Scalar | float32 | Discount if provided, default to 1. | |
| steps/is_first | Tensor | bool | ||
| steps/is_last | Tensor | bool | ||
| steps/is_terminal | Tensor | bool | ||
| steps/language_embedding | Tensor | (512,) | float32 | Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5 |
| steps/language_instruction | Text | string | Detailed Language Instructions for each task. | |
| steps/observation | FeaturesDict | |||
| steps/observation/image | Image | (128, 128, 3) | uint8 | Main camera RGB observation. |
| steps/observation/state | Tensor | (24,) | float32 | Robot state, consists of [7x robot joint angles, 1x gripper position, 16x robot end-effector homogeneous matrix]. |
| steps/observation/wrist_image | Image | (128, 128, 3) | uint8 | Wrist camera RGB observation. |
| steps/reward | Scalar | float32 | Reward if provided, 1 on final step for demos. |
Supervised keys (See
as_superviseddoc):NoneFigure (tfds.show_examples): Not supported.
Examples (tfds.as_dataframe):
- Citation:
@inproceedings{
shah2023mutex,
title={ {MUTEX}: Learning Unified Policies from Multimodal Task Specifications},
author={Rutav Shah and Roberto Mart{\'\i}n-Mart{\'\i}n and Yuke Zhu},
booktitle={7th Annual Conference on Robot Learning},
year={2023},
url={https://openreview.net/forum?id=PwqiqaaEzJ}
}