• Description:

Franka picking objects and insertion tasks

Split Examples
'train' 631
  • Feature structure:
    'episode_metadata': FeaturesDict({
        'file_path': Text(shape=(), dtype=string),
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32),
        'discount': Scalar(shape=(), dtype=float32),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'language_embedding': Tensor(shape=(512,), dtype=float32),
        'language_instruction': Text(shape=(), dtype=string),
        'observation': FeaturesDict({
            'image': Image(shape=(360, 640, 3), dtype=uint8),
            'state': Tensor(shape=(20,), dtype=float32),
            'wrist_image': Image(shape=(240, 320, 3), dtype=uint8),
        'reward': Scalar(shape=(), dtype=float32),
  • Feature documentation:
Feature Class Shape Dtype Description
episode_metadata FeaturesDict
episode_metadata/file_path Text string Path to the original data file.
steps Dataset
steps/action Tensor (8,) float32 Robot action, consists of [3x end-effector position, 4x end-effector quaternion, 1x gripper open/close].
steps/discount Scalar float32 Discount if provided, default to 1.
steps/is_first Tensor bool
steps/is_last Tensor bool
steps/is_terminal Tensor bool
steps/language_embedding Tensor (512,) float32 Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5
steps/language_instruction Text string Language Instruction.
steps/observation FeaturesDict
steps/observation/image Image (360, 640, 3) uint8 Main camera RGB observation.
steps/observation/state Tensor (20,) float32 Robot state, consists of [7x robot joint angles, 1x gripper status, 6x joint torques, 6x end-effector force].
steps/observation/wrist_image Image (240, 320, 3) uint8 Wrist camera RGB observation.
steps/reward Scalar float32 Reward if provided, 1 on final step for demos.
  • Citation:
title={Multi-Resolution Sensing for Real-Time Control with Vision-Language Models},
author={Saumya Saxena and Mohit Sharma and Oliver Kroemer},
booktitle={7th Annual Conference on Robot Learning},