robomimic_ph

  • Descrição :

Os conjuntos de dados humanos proficientes Robomimic foram coletados por 1 operador proficiente usando a plataforma RoboTurk (com exceção de Transporte, que tinha 2 operadores proficientes trabalhando juntos). Cada conjunto de dados consiste em 200 trajetórias bem-sucedidas.

Cada tarefa tem duas versões: uma com observações de baixa dimensão ( low_dim ) e outra com imagens ( image ).

Os conjuntos de dados seguem o formato RLDS para representar etapas e episódios.

Dividir Exemplos
'train' 200
@inproceedings{robomimic2021,
  title={What Matters in Learning from Offline Human Demonstrations for Robot Manipulation},
  author={Ajay Mandlekar and Danfei Xu and Josiah Wong and Soroush Nasiriany
          and Chen Wang and Rohun Kulkarni and Li Fei-Fei and Silvio Savarese
          and Yuke Zhu and Roberto Mart\'{i}n-Mart\'{i}n},
  booktitle={Conference on Robot Learning},
  year={2021}
}

robomimic_ph/lift_ph_image (configuração padrão)

  • Tamanho do download : 798.43 MiB

  • Tamanho do conjunto de dados : 114.47 MiB

  • Cache automático ( documentação ): Sim

  • Estrutura de recursos :

FeaturesDict({
    '20_percent': bool,
    '20_percent_train': bool,
    '20_percent_valid': bool,
    '50_percent': bool,
    '50_percent_train': bool,
    '50_percent_valid': bool,
    'episode_id': string,
    'horizon': int32,
    'steps': Dataset({
        'action': Tensor(shape=(7,), dtype=float64),
        'discount': int32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': FeaturesDict({
            'agentview_image': Image(shape=(84, 84, 3), dtype=uint8),
            'object': Tensor(shape=(10,), dtype=float64),
            'robot0_eef_pos': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_quat': Tensor(shape=(4,), dtype=float64),
            'robot0_eef_vel_ang': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_vel_lin': Tensor(shape=(3,), dtype=float64),
            'robot0_eye_in_hand_image': Image(shape=(84, 84, 3), dtype=uint8),
            'robot0_gripper_qpos': Tensor(shape=(2,), dtype=float64),
            'robot0_gripper_qvel': Tensor(shape=(2,), dtype=float64),
            'robot0_joint_pos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_cos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_sin': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_vel': Tensor(shape=(7,), dtype=float64),
        }),
        'reward': float64,
        'states': Tensor(shape=(32,), dtype=float64),
    }),
    'train': bool,
    'valid': bool,
})
  • Documentação do recurso :
Recurso Aula Forma Tipo D Descrição
RecursosDict
20 porcento tensor bool
20_percent_train tensor bool
20_percent_valid tensor bool
50 por cento tensor bool
50_percent_train tensor bool
50_percent_valid tensor bool
episódio_id tensor corda
horizonte tensor int32
passos conjunto de dados
passos/ação tensor (7,) float64
passos/desconto tensor int32
passos/é_primeiro tensor bool
passos/é_último tensor bool
passos/is_terminal tensor bool
passos/observação RecursosDict
passos/observação/agentview_image Imagem (84, 84, 3) uint8
passos/observação/objeto tensor (10,) float64
passos/observação/robot0_eef_pos tensor (3,) float64 Posição do efetuador final
passos/observação/robot0_eef_quat tensor (4,) float64 Orientação do efetuador final
passos/observação/robot0_eef_vel_ang tensor (3,) float64 Velocidade angular do efetor final
passos/observação/robot0_eef_vel_lin tensor (3,) float64 Velocidade cartesiana do efetor final
passos/observação/robot0_eye_in_hand_image Imagem (84, 84, 3) uint8
passos/observação/robot0_gripper_qpos tensor (2,) float64 Posição da garra
passos/observação/robot0_gripper_qvel tensor (2,) float64 Velocidade da pinça
passos/observação/robot0_joint_pos tensor (7,) float64 7DOF posições conjuntas
passos/observação/robot0_joint_pos_cos tensor (7,) float64
passos/observação/robot0_joint_pos_sin tensor (7,) float64
passos/observação/robot0_joint_vel tensor (7,) float64 7DOF velocidades conjuntas
passos/recompensa tensor float64
passos/estados tensor (32,) float64
trem tensor bool
válido tensor bool

robomimic_ph/lift_ph_low_dim

  • Tamanho do download : 17.69 MiB

  • Tamanho do conjunto de dados : 8.50 MiB

  • Cache automático ( documentação ): Sim

  • Estrutura de recursos :

FeaturesDict({
    '20_percent': bool,
    '20_percent_train': bool,
    '20_percent_valid': bool,
    '50_percent': bool,
    '50_percent_train': bool,
    '50_percent_valid': bool,
    'episode_id': string,
    'horizon': int32,
    'steps': Dataset({
        'action': Tensor(shape=(7,), dtype=float64),
        'discount': int32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': FeaturesDict({
            'object': Tensor(shape=(10,), dtype=float64),
            'robot0_eef_pos': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_quat': Tensor(shape=(4,), dtype=float64),
            'robot0_eef_vel_ang': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_vel_lin': Tensor(shape=(3,), dtype=float64),
            'robot0_gripper_qpos': Tensor(shape=(2,), dtype=float64),
            'robot0_gripper_qvel': Tensor(shape=(2,), dtype=float64),
            'robot0_joint_pos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_cos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_sin': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_vel': Tensor(shape=(7,), dtype=float64),
        }),
        'reward': float64,
        'states': Tensor(shape=(32,), dtype=float64),
    }),
    'train': bool,
    'valid': bool,
})
  • Documentação do recurso :
Recurso Aula Forma Tipo D Descrição
RecursosDict
20 porcento tensor bool
20_percent_train tensor bool
20_percent_valid tensor bool
50 por cento tensor bool
50_percent_train tensor bool
50_percent_valid tensor bool
episódio_id tensor corda
horizonte tensor int32
passos conjunto de dados
passos/ação tensor (7,) float64
passos/desconto tensor int32
passos/é_primeiro tensor bool
passos/é_último tensor bool
passos/is_terminal tensor bool
passos/observação RecursosDict
passos/observação/objeto tensor (10,) float64
passos/observação/robot0_eef_pos tensor (3,) float64 Posição do efetuador final
passos/observação/robot0_eef_quat tensor (4,) float64 Orientação do efetuador final
passos/observação/robot0_eef_vel_ang tensor (3,) float64 Velocidade angular do efetor final
passos/observação/robot0_eef_vel_lin tensor (3,) float64 Velocidade cartesiana do efetor final
passos/observação/robot0_gripper_qpos tensor (2,) float64 Posição da garra
passos/observação/robot0_gripper_qvel tensor (2,) float64 Velocidade da pinça
passos/observação/robot0_joint_pos tensor (7,) float64 7DOF posições conjuntas
passos/observação/robot0_joint_pos_cos tensor (7,) float64
passos/observação/robot0_joint_pos_sin tensor (7,) float64
passos/observação/robot0_joint_vel tensor (7,) float64 7DOF velocidades conjuntas
passos/recompensa tensor float64
passos/estados tensor (32,) float64
trem tensor bool
válido tensor bool

robomimic_ph/can_ph_image

  • Tamanho do download : 1.87 GiB

  • Tamanho do conjunto de dados : 474.55 MiB

  • Armazenado em cache automaticamente ( documentação ): Não

  • Estrutura de recursos :

FeaturesDict({
    '20_percent': bool,
    '20_percent_train': bool,
    '20_percent_valid': bool,
    '50_percent': bool,
    '50_percent_train': bool,
    '50_percent_valid': bool,
    'episode_id': string,
    'horizon': int32,
    'steps': Dataset({
        'action': Tensor(shape=(7,), dtype=float64),
        'discount': int32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': FeaturesDict({
            'agentview_image': Image(shape=(84, 84, 3), dtype=uint8),
            'object': Tensor(shape=(14,), dtype=float64),
            'robot0_eef_pos': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_quat': Tensor(shape=(4,), dtype=float64),
            'robot0_eef_vel_ang': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_vel_lin': Tensor(shape=(3,), dtype=float64),
            'robot0_eye_in_hand_image': Image(shape=(84, 84, 3), dtype=uint8),
            'robot0_gripper_qpos': Tensor(shape=(2,), dtype=float64),
            'robot0_gripper_qvel': Tensor(shape=(2,), dtype=float64),
            'robot0_joint_pos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_cos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_sin': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_vel': Tensor(shape=(7,), dtype=float64),
        }),
        'reward': float64,
        'states': Tensor(shape=(71,), dtype=float64),
    }),
    'train': bool,
    'valid': bool,
})
  • Documentação do recurso :
Recurso Aula Forma Tipo D Descrição
RecursosDict
20 porcento tensor bool
20_percent_train tensor bool
20_percent_valid tensor bool
50 por cento tensor bool
50_percent_train tensor bool
50_percent_valid tensor bool
episódio_id tensor corda
horizonte tensor int32
passos conjunto de dados
passos/ação tensor (7,) float64
passos/desconto tensor int32
passos/é_primeiro tensor bool
passos/é_último tensor bool
passos/is_terminal tensor bool
passos/observação RecursosDict
passos/observação/agentview_image Imagem (84, 84, 3) uint8
passos/observação/objeto tensor (14,) float64
passos/observação/robot0_eef_pos tensor (3,) float64 Posição do efetuador final
passos/observação/robot0_eef_quat tensor (4,) float64 Orientação do efetuador final
passos/observação/robot0_eef_vel_ang tensor (3,) float64 Velocidade angular do efetor final
passos/observação/robot0_eef_vel_lin tensor (3,) float64 Velocidade cartesiana do efetor final
passos/observação/robot0_eye_in_hand_image Imagem (84, 84, 3) uint8
passos/observação/robot0_gripper_qpos tensor (2,) float64 Posição da garra
passos/observação/robot0_gripper_qvel tensor (2,) float64 Velocidade da pinça
passos/observação/robot0_joint_pos tensor (7,) float64 7DOF posições conjuntas
passos/observação/robot0_joint_pos_cos tensor (7,) float64
passos/observação/robot0_joint_pos_sin tensor (7,) float64
passos/observação/robot0_joint_vel tensor (7,) float64 7DOF velocidades conjuntas
passos/recompensa tensor float64
passos/estados tensor (71,) float64
trem tensor bool
válido tensor bool

robomimic_ph/can_ph_low_dim

  • Tamanho do download : 43.38 MiB

  • Tamanho do conjunto de dados : 27.73 MiB

  • Cache automático ( documentação ): Sim

  • Estrutura de recursos :

FeaturesDict({
    '20_percent': bool,
    '20_percent_train': bool,
    '20_percent_valid': bool,
    '50_percent': bool,
    '50_percent_train': bool,
    '50_percent_valid': bool,
    'episode_id': string,
    'horizon': int32,
    'steps': Dataset({
        'action': Tensor(shape=(7,), dtype=float64),
        'discount': int32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': FeaturesDict({
            'object': Tensor(shape=(14,), dtype=float64),
            'robot0_eef_pos': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_quat': Tensor(shape=(4,), dtype=float64),
            'robot0_eef_vel_ang': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_vel_lin': Tensor(shape=(3,), dtype=float64),
            'robot0_gripper_qpos': Tensor(shape=(2,), dtype=float64),
            'robot0_gripper_qvel': Tensor(shape=(2,), dtype=float64),
            'robot0_joint_pos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_cos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_sin': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_vel': Tensor(shape=(7,), dtype=float64),
        }),
        'reward': float64,
        'states': Tensor(shape=(71,), dtype=float64),
    }),
    'train': bool,
    'valid': bool,
})
  • Documentação do recurso :
Recurso Aula Forma Tipo D Descrição
RecursosDict
20 porcento tensor bool
20_percent_train tensor bool
20_percent_valid tensor bool
50 por cento tensor bool
50_percent_train tensor bool
50_percent_valid tensor bool
episódio_id tensor corda
horizonte tensor int32
passos conjunto de dados
passos/ação tensor (7,) float64
passos/desconto tensor int32
passos/é_primeiro tensor bool
passos/é_último tensor bool
passos/is_terminal tensor bool
passos/observação RecursosDict
passos/observação/objeto tensor (14,) float64
passos/observação/robot0_eef_pos tensor (3,) float64 Posição do efetuador final
passos/observação/robot0_eef_quat tensor (4,) float64 Orientação do efetuador final
passos/observação/robot0_eef_vel_ang tensor (3,) float64 Velocidade angular do efetor final
passos/observação/robot0_eef_vel_lin tensor (3,) float64 Velocidade cartesiana do efetor final
passos/observação/robot0_gripper_qpos tensor (2,) float64 Posição da garra
passos/observação/robot0_gripper_qvel tensor (2,) float64 Velocidade da pinça
passos/observação/robot0_joint_pos tensor (7,) float64 7DOF posições conjuntas
passos/observação/robot0_joint_pos_cos tensor (7,) float64
passos/observação/robot0_joint_pos_sin tensor (7,) float64
passos/observação/robot0_joint_vel tensor (7,) float64 7DOF velocidades conjuntas
passos/recompensa tensor float64
passos/estados tensor (71,) float64
trem tensor bool
válido tensor bool

robomimic_ph/square_ph_image

  • Tamanho do download : 2.42 GiB

  • Tamanho do conjunto de dados : 401.28 MiB

  • Armazenado em cache automaticamente ( documentação ): Não

  • Estrutura de recursos :

FeaturesDict({
    '20_percent': bool,
    '20_percent_train': bool,
    '20_percent_valid': bool,
    '50_percent': bool,
    '50_percent_train': bool,
    '50_percent_valid': bool,
    'episode_id': string,
    'horizon': int32,
    'steps': Dataset({
        'action': Tensor(shape=(7,), dtype=float64),
        'discount': int32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': FeaturesDict({
            'agentview_image': Image(shape=(84, 84, 3), dtype=uint8),
            'object': Tensor(shape=(14,), dtype=float64),
            'robot0_eef_pos': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_quat': Tensor(shape=(4,), dtype=float64),
            'robot0_eef_vel_ang': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_vel_lin': Tensor(shape=(3,), dtype=float64),
            'robot0_eye_in_hand_image': Image(shape=(84, 84, 3), dtype=uint8),
            'robot0_gripper_qpos': Tensor(shape=(2,), dtype=float64),
            'robot0_gripper_qvel': Tensor(shape=(2,), dtype=float64),
            'robot0_joint_pos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_cos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_sin': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_vel': Tensor(shape=(7,), dtype=float64),
        }),
        'reward': float64,
        'states': Tensor(shape=(45,), dtype=float64),
    }),
    'train': bool,
    'valid': bool,
})
  • Documentação do recurso :
Recurso Aula Forma Tipo D Descrição
RecursosDict
20 porcento tensor bool
20_percent_train tensor bool
20_percent_valid tensor bool
50 por cento tensor bool
50_percent_train tensor bool
50_percent_valid tensor bool
episódio_id tensor corda
horizonte tensor int32
passos conjunto de dados
passos/ação tensor (7,) float64
passos/desconto tensor int32
passos/é_primeiro tensor bool
passos/é_último tensor bool
passos/is_terminal tensor bool
passos/observação RecursosDict
passos/observação/agentview_image Imagem (84, 84, 3) uint8
passos/observação/objeto tensor (14,) float64
passos/observação/robot0_eef_pos tensor (3,) float64 Posição do efetuador final
passos/observação/robot0_eef_quat tensor (4,) float64 Orientação do efetuador final
passos/observação/robot0_eef_vel_ang tensor (3,) float64 Velocidade angular do efetor final
passos/observação/robot0_eef_vel_lin tensor (3,) float64 Velocidade cartesiana do efetor final
passos/observação/robot0_eye_in_hand_image Imagem (84, 84, 3) uint8
passos/observação/robot0_gripper_qpos tensor (2,) float64 Posição da garra
passos/observação/robot0_gripper_qvel tensor (2,) float64 Velocidade da garra
passos/observação/robot0_joint_pos tensor (7,) float64 7DOF posições conjuntas
passos/observação/robot0_joint_pos_cos tensor (7,) float64
passos/observação/robot0_joint_pos_sin tensor (7,) float64
passos/observação/robot0_joint_vel tensor (7,) float64 7DOF velocidades conjuntas
passos/recompensa tensor float64
passos/estados tensor (45,) float64
trem tensor bool
válido tensor bool

robomimic_ph/square_ph_low_dim

  • Tamanho do download : 47.69 MiB

  • Tamanho do conjunto de dados : 29.91 MiB

  • Cache automático ( documentação ): Sim

  • Estrutura de recursos :

FeaturesDict({
    '20_percent': bool,
    '20_percent_train': bool,
    '20_percent_valid': bool,
    '50_percent': bool,
    '50_percent_train': bool,
    '50_percent_valid': bool,
    'episode_id': string,
    'horizon': int32,
    'steps': Dataset({
        'action': Tensor(shape=(7,), dtype=float64),
        'discount': int32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': FeaturesDict({
            'object': Tensor(shape=(14,), dtype=float64),
            'robot0_eef_pos': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_quat': Tensor(shape=(4,), dtype=float64),
            'robot0_eef_vel_ang': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_vel_lin': Tensor(shape=(3,), dtype=float64),
            'robot0_gripper_qpos': Tensor(shape=(2,), dtype=float64),
            'robot0_gripper_qvel': Tensor(shape=(2,), dtype=float64),
            'robot0_joint_pos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_cos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_sin': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_vel': Tensor(shape=(7,), dtype=float64),
        }),
        'reward': float64,
        'states': Tensor(shape=(45,), dtype=float64),
    }),
    'train': bool,
    'valid': bool,
})
  • Documentação do recurso :
Recurso Aula Forma Tipo D Descrição
RecursosDict
20 porcento tensor bool
20_percent_train tensor bool
20_percent_valid tensor bool
50 por cento tensor bool
50_percent_train tensor bool
50_percent_valid tensor bool
episódio_id tensor corda
horizonte tensor int32
passos conjunto de dados
passos/ação tensor (7,) float64
passos/desconto tensor int32
passos/é_primeiro tensor bool
passos/é_último tensor bool
passos/is_terminal tensor bool
passos/observação RecursosDict
passos/observação/objeto tensor (14,) float64
passos/observação/robot0_eef_pos tensor (3,) float64 Posição do efetuador final
passos/observação/robot0_eef_quat tensor (4,) float64 Orientação do efetuador final
passos/observação/robot0_eef_vel_ang tensor (3,) float64 Velocidade angular do efetor final
passos/observação/robot0_eef_vel_lin tensor (3,) float64 Velocidade cartesiana do efetor final
passos/observação/robot0_gripper_qpos tensor (2,) float64 Posição da garra
passos/observação/robot0_gripper_qvel tensor (2,) float64 Velocidade da pinça
passos/observação/robot0_joint_pos tensor (7,) float64 7DOF posições conjuntas
passos/observação/robot0_joint_pos_cos tensor (7,) float64
passos/observação/robot0_joint_pos_sin tensor (7,) float64
passos/observação/robot0_joint_vel tensor (7,) float64 7DOF velocidades conjuntas
passos/recompensa tensor float64
passos/estados tensor (45,) float64
trem tensor bool
válido tensor bool

robomimic_ph/transport_ph_image

  • Tamanho do download : 15.07 GiB

  • Tamanho do conjunto de dados : 3.64 GiB

  • Armazenado em cache automaticamente ( documentação ): Não

  • Estrutura de recursos :

FeaturesDict({
    '20_percent': bool,
    '20_percent_train': bool,
    '20_percent_valid': bool,
    '50_percent': bool,
    '50_percent_train': bool,
    '50_percent_valid': bool,
    'episode_id': string,
    'horizon': int32,
    'steps': Dataset({
        'action': Tensor(shape=(14,), dtype=float64),
        'discount': int32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': FeaturesDict({
            'object': Tensor(shape=(41,), dtype=float64),
            'robot0_eef_pos': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_quat': Tensor(shape=(4,), dtype=float64),
            'robot0_eef_vel_ang': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_vel_lin': Tensor(shape=(3,), dtype=float64),
            'robot0_eye_in_hand_image': Image(shape=(84, 84, 3), dtype=uint8),
            'robot0_gripper_qpos': Tensor(shape=(2,), dtype=float64),
            'robot0_gripper_qvel': Tensor(shape=(2,), dtype=float64),
            'robot0_joint_pos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_cos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_sin': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_vel': Tensor(shape=(7,), dtype=float64),
            'robot1_eef_pos': Tensor(shape=(3,), dtype=float64),
            'robot1_eef_quat': Tensor(shape=(4,), dtype=float64),
            'robot1_eef_vel_ang': Tensor(shape=(3,), dtype=float64),
            'robot1_eef_vel_lin': Tensor(shape=(3,), dtype=float64),
            'robot1_eye_in_hand_image': Image(shape=(84, 84, 3), dtype=uint8),
            'robot1_gripper_qpos': Tensor(shape=(2,), dtype=float64),
            'robot1_gripper_qvel': Tensor(shape=(2,), dtype=float64),
            'robot1_joint_pos': Tensor(shape=(7,), dtype=float64),
            'robot1_joint_pos_cos': Tensor(shape=(7,), dtype=float64),
            'robot1_joint_pos_sin': Tensor(shape=(7,), dtype=float64),
            'robot1_joint_vel': Tensor(shape=(7,), dtype=float64),
            'shouldercamera0_image': Image(shape=(84, 84, 3), dtype=uint8),
            'shouldercamera1_image': Image(shape=(84, 84, 3), dtype=uint8),
        }),
        'reward': float64,
        'states': Tensor(shape=(115,), dtype=float64),
    }),
    'train': bool,
    'valid': bool,
})
  • Documentação do recurso :
Recurso Aula Forma Tipo D Descrição
RecursosDict
20 porcento tensor bool
20_percent_train tensor bool
20_percent_valid tensor bool
50 por cento tensor bool
50_percent_train tensor bool
50_percent_valid tensor bool
episódio_id tensor corda
horizonte tensor int32
passos conjunto de dados
passos/ação tensor (14,) float64
passos/desconto tensor int32
passos/é_primeiro tensor bool
passos/é_último tensor bool
passos/is_terminal tensor bool
passos/observação RecursosDict
passos/observação/objeto tensor (41,) float64
passos/observação/robot0_eef_pos tensor (3,) float64 Posição do efetuador final
passos/observação/robot0_eef_quat tensor (4,) float64 Orientação do efetuador final
passos/observação/robot0_eef_vel_ang tensor (3,) float64 Velocidade angular do efetor final
passos/observação/robot0_eef_vel_lin tensor (3,) float64 Velocidade cartesiana do efetor final
passos/observação/robot0_eye_in_hand_image Imagem (84, 84, 3) uint8
passos/observação/robot0_gripper_qpos tensor (2,) float64 Posição da garra
passos/observação/robot0_gripper_qvel tensor (2,) float64 Velocidade da pinça
passos/observação/robot0_joint_pos tensor (7,) float64 7DOF posições conjuntas
passos/observação/robot0_joint_pos_cos tensor (7,) float64
passos/observação/robot0_joint_pos_sin tensor (7,) float64
passos/observação/robot0_joint_vel tensor (7,) float64 7DOF velocidades conjuntas
passos/observação/robot1_eef_pos tensor (3,) float64 Posição do efetuador final
passos/observação/robot1_eef_quat tensor (4,) float64 Orientação do efetuador final
passos/observação/robot1_eef_vel_ang tensor (3,) float64 Velocidade angular do efetor final
passos/observação/robot1_eef_vel_lin tensor (3,) float64 Velocidade cartesiana do efetor final
passos/observação/robot1_eye_in_hand_image Imagem (84, 84, 3) uint8
passos/observação/robot1_gripper_qpos tensor (2,) float64 Posição da garra
passos/observação/robot1_gripper_qvel tensor (2,) float64 Velocidade da garra
passos/observação/robot1_joint_pos tensor (7,) float64 7DOF posições conjuntas
passos/observação/robot1_joint_pos_cos tensor (7,) float64
passos/observação/robot1_joint_pos_sin tensor (7,) float64
passos/observação/robot1_joint_vel tensor (7,) float64 7DOF velocidades conjuntas
passos/observação/shouldercamera0_image Imagem (84, 84, 3) uint8
passos/observação/shouldercamera1_image Imagem (84, 84, 3) uint8
passos/recompensa tensor float64
passos/estados tensor (115,) float64
trem tensor bool
válido tensor bool

robomimic_ph/transport_ph_low_dim

  • Tamanho do download : 294.70 MiB

  • Tamanho do conjunto de dados : 208.05 MiB

  • Armazenado em cache automaticamente ( documentação ): Somente quando shuffle_files=False (train)

  • Estrutura de recursos :

FeaturesDict({
    '20_percent': bool,
    '20_percent_train': bool,
    '20_percent_valid': bool,
    '50_percent': bool,
    '50_percent_train': bool,
    '50_percent_valid': bool,
    'episode_id': string,
    'horizon': int32,
    'steps': Dataset({
        'action': Tensor(shape=(14,), dtype=float64),
        'discount': int32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': FeaturesDict({
            'object': Tensor(shape=(41,), dtype=float64),
            'robot0_eef_pos': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_quat': Tensor(shape=(4,), dtype=float64),
            'robot0_eef_vel_ang': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_vel_lin': Tensor(shape=(3,), dtype=float64),
            'robot0_gripper_qpos': Tensor(shape=(2,), dtype=float64),
            'robot0_gripper_qvel': Tensor(shape=(2,), dtype=float64),
            'robot0_joint_pos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_cos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_sin': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_vel': Tensor(shape=(7,), dtype=float64),
            'robot1_eef_pos': Tensor(shape=(3,), dtype=float64),
            'robot1_eef_quat': Tensor(shape=(4,), dtype=float64),
            'robot1_eef_vel_ang': Tensor(shape=(3,), dtype=float64),
            'robot1_eef_vel_lin': Tensor(shape=(3,), dtype=float64),
            'robot1_gripper_qpos': Tensor(shape=(2,), dtype=float64),
            'robot1_gripper_qvel': Tensor(shape=(2,), dtype=float64),
            'robot1_joint_pos': Tensor(shape=(7,), dtype=float64),
            'robot1_joint_pos_cos': Tensor(shape=(7,), dtype=float64),
            'robot1_joint_pos_sin': Tensor(shape=(7,), dtype=float64),
            'robot1_joint_vel': Tensor(shape=(7,), dtype=float64),
        }),
        'reward': float64,
        'states': Tensor(shape=(115,), dtype=float64),
    }),
    'train': bool,
    'valid': bool,
})
  • Documentação do recurso :
Recurso Aula Forma Tipo D Descrição
RecursosDict
20 porcento tensor bool
20_percent_train tensor bool
20_percent_valid tensor bool
50 por cento tensor bool
50_percent_train tensor bool
50_percent_valid tensor bool
episódio_id tensor corda
horizonte tensor int32
passos conjunto de dados
passos/ação tensor (14,) float64
passos/desconto tensor int32
passos/é_primeiro tensor bool
passos/é_último tensor bool
passos/is_terminal tensor bool
passos/observação RecursosDict
passos/observação/objeto tensor (41,) float64
passos/observação/robot0_eef_pos tensor (3,) float64 Posição do efetuador final
passos/observação/robot0_eef_quat tensor (4,) float64 Orientação do efetuador final
passos/observação/robot0_eef_vel_ang tensor (3,) float64 Velocidade angular do efetor final
passos/observação/robot0_eef_vel_lin tensor (3,) float64 Velocidade cartesiana do efetor final
passos/observação/robot0_gripper_qpos tensor (2,) float64 Posição da garra
passos/observação/robot0_gripper_qvel tensor (2,) float64 Velocidade da garra
passos/observação/robot0_joint_pos tensor (7,) float64 7DOF posições conjuntas
passos/observação/robot0_joint_pos_cos tensor (7,) float64
passos/observação/robot0_joint_pos_sin tensor (7,) float64
passos/observação/robot0_joint_vel tensor (7,) float64 7DOF velocidades conjuntas
passos/observação/robot1_eef_pos tensor (3,) float64 Posição do efetuador final
passos/observação/robot1_eef_quat tensor (4,) float64 Orientação do efetuador final
passos/observação/robot1_eef_vel_ang tensor (3,) float64 Velocidade angular do efetor final
passos/observação/robot1_eef_vel_lin tensor (3,) float64 Velocidade cartesiana do efetor final
passos/observação/robot1_gripper_qpos tensor (2,) float64 Posição da garra
passos/observação/robot1_gripper_qvel tensor (2,) float64 Velocidade da pinça
passos/observação/robot1_joint_pos tensor (7,) float64 7DOF posições conjuntas
passos/observação/robot1_joint_pos_cos tensor (7,) float64
passos/observação/robot1_joint_pos_sin tensor (7,) float64
passos/observação/robot1_joint_vel tensor (7,) float64 7DOF velocidades conjuntas
passos/recompensa tensor float64
passos/estados tensor (115,) float64
trem tensor bool
válido tensor bool

robomimic_ph/tool_hang_ph_image

  • Tamanho do download : 61.96 GiB

  • Tamanho do conjunto de dados : 9.10 GiB

  • Armazenado em cache automaticamente ( documentação ): Não

  • Estrutura de recursos :

FeaturesDict({
    'episode_id': string,
    'horizon': int32,
    'steps': Dataset({
        'action': Tensor(shape=(7,), dtype=float64),
        'discount': int32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': FeaturesDict({
            'object': Tensor(shape=(44,), dtype=float64),
            'robot0_eef_pos': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_quat': Tensor(shape=(4,), dtype=float64),
            'robot0_eef_vel_ang': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_vel_lin': Tensor(shape=(3,), dtype=float64),
            'robot0_eye_in_hand_image': Image(shape=(240, 240, 3), dtype=uint8),
            'robot0_gripper_qpos': Tensor(shape=(2,), dtype=float64),
            'robot0_gripper_qvel': Tensor(shape=(2,), dtype=float64),
            'robot0_joint_pos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_cos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_sin': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_vel': Tensor(shape=(7,), dtype=float64),
            'sideview_image': Image(shape=(240, 240, 3), dtype=uint8),
        }),
        'reward': float64,
        'states': Tensor(shape=(58,), dtype=float64),
    }),
    'train': bool,
    'valid': bool,
})
  • Documentação do recurso :
Recurso Aula Forma Tipo D Descrição
RecursosDict
episódio_id tensor corda
horizonte tensor int32
passos conjunto de dados
passos/ação tensor (7,) float64
passos/desconto tensor int32
passos/é_primeiro tensor bool
passos/é_último tensor bool
passos/is_terminal tensor bool
passos/observação RecursosDict
passos/observação/objeto tensor (44,) float64
passos/observação/robot0_eef_pos tensor (3,) float64 Posição do efetuador final
passos/observação/robot0_eef_quat tensor (4,) float64 Orientação do efetuador final
passos/observação/robot0_eef_vel_ang tensor (3,) float64 Velocidade angular do efetor final
passos/observação/robot0_eef_vel_lin tensor (3,) float64 Velocidade cartesiana do efetor final
passos/observação/robot0_eye_in_hand_image Imagem (240, 240, 3) uint8
passos/observação/robot0_gripper_qpos tensor (2,) float64 Posição da garra
passos/observação/robot0_gripper_qvel tensor (2,) float64 Velocidade da garra
passos/observação/robot0_joint_pos tensor (7,) float64 7DOF posições conjuntas
passos/observação/robot0_joint_pos_cos tensor (7,) float64
passos/observação/robot0_joint_pos_sin tensor (7,) float64
passos/observação/robot0_joint_vel tensor (7,) float64 7DOF velocidades conjuntas
passos/observação/sideview_image Imagem (240, 240, 3) uint8
passos/recompensa tensor float64
passos/estados tensor (58,) float64
trem tensor bool
válido tensor bool

robomimic_ph/tool_hang_ph_low_dim

  • Tamanho do download : 192.29 MiB

  • Tamanho do conjunto de dados : 121.77 MiB

  • Cache automático ( documentação ): Sim

  • Estrutura de recursos :

FeaturesDict({
    'episode_id': string,
    'horizon': int32,
    'steps': Dataset({
        'action': Tensor(shape=(7,), dtype=float64),
        'discount': int32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': FeaturesDict({
            'object': Tensor(shape=(44,), dtype=float64),
            'robot0_eef_pos': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_quat': Tensor(shape=(4,), dtype=float64),
            'robot0_eef_vel_ang': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_vel_lin': Tensor(shape=(3,), dtype=float64),
            'robot0_gripper_qpos': Tensor(shape=(2,), dtype=float64),
            'robot0_gripper_qvel': Tensor(shape=(2,), dtype=float64),
            'robot0_joint_pos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_cos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_sin': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_vel': Tensor(shape=(7,), dtype=float64),
        }),
        'reward': float64,
        'states': Tensor(shape=(58,), dtype=float64),
    }),
    'train': bool,
    'valid': bool,
})
  • Documentação do recurso :
Recurso Aula Forma Tipo D Descrição
RecursosDict
episódio_id tensor corda
horizonte tensor int32
passos conjunto de dados
passos/ação tensor (7,) float64
passos/desconto tensor int32
passos/é_primeiro tensor bool
passos/é_último tensor bool
passos/is_terminal tensor bool
passos/observação RecursosDict
passos/observação/objeto tensor (44,) float64
passos/observação/robot0_eef_pos tensor (3,) float64 Posição do efetuador final
passos/observação/robot0_eef_quat tensor (4,) float64 Orientação do efetuador final
passos/observação/robot0_eef_vel_ang tensor (3,) float64 Velocidade angular do efetor final
passos/observação/robot0_eef_vel_lin tensor (3,) float64 Velocidade cartesiana do efetor final
passos/observação/robot0_gripper_qpos tensor (2,) float64 Posição da garra
passos/observação/robot0_gripper_qvel tensor (2,) float64 Velocidade da garra
passos/observação/robot0_joint_pos tensor (7,) float64 7DOF posições conjuntas
passos/observação/robot0_joint_pos_cos tensor (7,) float64
passos/observação/robot0_joint_pos_sin tensor (7,) float64
passos/observação/robot0_joint_vel tensor (7,) float64 7DOF velocidades conjuntas
passos/recompensa tensor float64
passos/estados tensor (58,) float64
trem tensor bool
válido tensor bool
,

  • Descrição :

Os conjuntos de dados humanos proficientes Robomimic foram coletados por 1 operador proficiente usando a plataforma RoboTurk (com exceção de Transporte, que tinha 2 operadores proficientes trabalhando juntos). Cada conjunto de dados consiste em 200 trajetórias bem-sucedidas.

Cada tarefa tem duas versões: uma com observações de baixa dimensão ( low_dim ) e outra com imagens ( image ).

Os conjuntos de dados seguem o formato RLDS para representar etapas e episódios.

Dividir Exemplos
'train' 200
@inproceedings{robomimic2021,
  title={What Matters in Learning from Offline Human Demonstrations for Robot Manipulation},
  author={Ajay Mandlekar and Danfei Xu and Josiah Wong and Soroush Nasiriany
          and Chen Wang and Rohun Kulkarni and Li Fei-Fei and Silvio Savarese
          and Yuke Zhu and Roberto Mart\'{i}n-Mart\'{i}n},
  booktitle={Conference on Robot Learning},
  year={2021}
}

robomimic_ph/lift_ph_image (configuração padrão)

  • Tamanho do download : 798.43 MiB

  • Tamanho do conjunto de dados : 114.47 MiB

  • Cache automático ( documentação ): Sim

  • Estrutura de recursos :

FeaturesDict({
    '20_percent': bool,
    '20_percent_train': bool,
    '20_percent_valid': bool,
    '50_percent': bool,
    '50_percent_train': bool,
    '50_percent_valid': bool,
    'episode_id': string,
    'horizon': int32,
    'steps': Dataset({
        'action': Tensor(shape=(7,), dtype=float64),
        'discount': int32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': FeaturesDict({
            'agentview_image': Image(shape=(84, 84, 3), dtype=uint8),
            'object': Tensor(shape=(10,), dtype=float64),
            'robot0_eef_pos': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_quat': Tensor(shape=(4,), dtype=float64),
            'robot0_eef_vel_ang': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_vel_lin': Tensor(shape=(3,), dtype=float64),
            'robot0_eye_in_hand_image': Image(shape=(84, 84, 3), dtype=uint8),
            'robot0_gripper_qpos': Tensor(shape=(2,), dtype=float64),
            'robot0_gripper_qvel': Tensor(shape=(2,), dtype=float64),
            'robot0_joint_pos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_cos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_sin': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_vel': Tensor(shape=(7,), dtype=float64),
        }),
        'reward': float64,
        'states': Tensor(shape=(32,), dtype=float64),
    }),
    'train': bool,
    'valid': bool,
})
  • Documentação do recurso :
Recurso Aula Forma Tipo D Descrição
RecursosDict
20 porcento tensor bool
20_percent_train tensor bool
20_percent_valid tensor bool
50 por cento tensor bool
50_percent_train tensor bool
50_percent_valid tensor bool
episódio_id tensor corda
horizonte tensor int32
passos conjunto de dados
passos/ação tensor (7,) float64
passos/desconto tensor int32
passos/é_primeiro tensor bool
passos/é_último tensor bool
passos/is_terminal tensor bool
passos/observação RecursosDict
passos/observação/agentview_image Imagem (84, 84, 3) uint8
passos/observação/objeto tensor (10,) float64
passos/observação/robot0_eef_pos tensor (3,) float64 Posição do efetuador final
passos/observação/robot0_eef_quat tensor (4,) float64 Orientação do efetuador final
passos/observação/robot0_eef_vel_ang tensor (3,) float64 Velocidade angular do efetor final
passos/observação/robot0_eef_vel_lin tensor (3,) float64 Velocidade cartesiana do efetor final
passos/observação/robot0_eye_in_hand_image Imagem (84, 84, 3) uint8
passos/observação/robot0_gripper_qpos tensor (2,) float64 Posição da garra
passos/observação/robot0_gripper_qvel tensor (2,) float64 Velocidade da garra
passos/observação/robot0_joint_pos tensor (7,) float64 7DOF posições conjuntas
passos/observação/robot0_joint_pos_cos tensor (7,) float64
passos/observação/robot0_joint_pos_sin tensor (7,) float64
passos/observação/robot0_joint_vel tensor (7,) float64 7DOF velocidades conjuntas
passos/recompensa tensor float64
passos/estados tensor (32,) float64
trem tensor bool
válido tensor bool

robomimic_ph/lift_ph_low_dim

  • Tamanho do download : 17.69 MiB

  • Tamanho do conjunto de dados : 8.50 MiB

  • Cache automático ( documentação ): Sim

  • Estrutura de recursos :

FeaturesDict({
    '20_percent': bool,
    '20_percent_train': bool,
    '20_percent_valid': bool,
    '50_percent': bool,
    '50_percent_train': bool,
    '50_percent_valid': bool,
    'episode_id': string,
    'horizon': int32,
    'steps': Dataset({
        'action': Tensor(shape=(7,), dtype=float64),
        'discount': int32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': FeaturesDict({
            'object': Tensor(shape=(10,), dtype=float64),
            'robot0_eef_pos': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_quat': Tensor(shape=(4,), dtype=float64),
            'robot0_eef_vel_ang': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_vel_lin': Tensor(shape=(3,), dtype=float64),
            'robot0_gripper_qpos': Tensor(shape=(2,), dtype=float64),
            'robot0_gripper_qvel': Tensor(shape=(2,), dtype=float64),
            'robot0_joint_pos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_cos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_sin': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_vel': Tensor(shape=(7,), dtype=float64),
        }),
        'reward': float64,
        'states': Tensor(shape=(32,), dtype=float64),
    }),
    'train': bool,
    'valid': bool,
})
  • Documentação do recurso :
Recurso Aula Forma Tipo D Descrição
RecursosDict
20 porcento tensor bool
20_percent_train tensor bool
20_percent_valid tensor bool
50 por cento tensor bool
50_percent_train tensor bool
50_percent_valid tensor bool
episódio_id tensor corda
horizonte tensor int32
passos conjunto de dados
passos/ação tensor (7,) float64
passos/desconto tensor int32
passos/é_primeiro tensor bool
passos/é_último tensor bool
passos/is_terminal tensor bool
passos/observação RecursosDict
passos/observação/objeto tensor (10,) float64
passos/observação/robot0_eef_pos tensor (3,) float64 Posição do efetuador final
passos/observação/robot0_eef_quat tensor (4,) float64 Orientação do efetuador final
passos/observação/robot0_eef_vel_ang tensor (3,) float64 Velocidade angular do efetor final
passos/observação/robot0_eef_vel_lin tensor (3,) float64 Velocidade cartesiana do efetor final
passos/observação/robot0_gripper_qpos tensor (2,) float64 Posição da garra
passos/observação/robot0_gripper_qvel tensor (2,) float64 Velocidade da pinça
passos/observação/robot0_joint_pos tensor (7,) float64 7DOF posições conjuntas
passos/observação/robot0_joint_pos_cos tensor (7,) float64
passos/observação/robot0_joint_pos_sin tensor (7,) float64
passos/observação/robot0_joint_vel tensor (7,) float64 7DOF velocidades conjuntas
passos/recompensa tensor float64
passos/estados tensor (32,) float64
trem tensor bool
válido tensor bool

robomimic_ph/can_ph_image

  • Tamanho do download : 1.87 GiB

  • Tamanho do conjunto de dados : 474.55 MiB

  • Armazenado em cache automaticamente ( documentação ): Não

  • Estrutura de recursos :

FeaturesDict({
    '20_percent': bool,
    '20_percent_train': bool,
    '20_percent_valid': bool,
    '50_percent': bool,
    '50_percent_train': bool,
    '50_percent_valid': bool,
    'episode_id': string,
    'horizon': int32,
    'steps': Dataset({
        'action': Tensor(shape=(7,), dtype=float64),
        'discount': int32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': FeaturesDict({
            'agentview_image': Image(shape=(84, 84, 3), dtype=uint8),
            'object': Tensor(shape=(14,), dtype=float64),
            'robot0_eef_pos': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_quat': Tensor(shape=(4,), dtype=float64),
            'robot0_eef_vel_ang': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_vel_lin': Tensor(shape=(3,), dtype=float64),
            'robot0_eye_in_hand_image': Image(shape=(84, 84, 3), dtype=uint8),
            'robot0_gripper_qpos': Tensor(shape=(2,), dtype=float64),
            'robot0_gripper_qvel': Tensor(shape=(2,), dtype=float64),
            'robot0_joint_pos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_cos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_sin': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_vel': Tensor(shape=(7,), dtype=float64),
        }),
        'reward': float64,
        'states': Tensor(shape=(71,), dtype=float64),
    }),
    'train': bool,
    'valid': bool,
})
  • Documentação do recurso :
Recurso Aula Forma Tipo D Descrição
RecursosDict
20 porcento tensor bool
20_percent_train tensor bool
20_percent_valid tensor bool
50 por cento tensor bool
50_percent_train tensor bool
50_percent_valid tensor bool
episódio_id tensor corda
horizonte tensor int32
passos conjunto de dados
passos/ação tensor (7,) float64
passos/desconto tensor int32
passos/é_primeiro tensor bool
passos/é_último tensor bool
passos/is_terminal tensor bool
passos/observação RecursosDict
passos/observação/agentview_image Imagem (84, 84, 3) uint8
passos/observação/objeto tensor (14,) float64
passos/observação/robot0_eef_pos tensor (3,) float64 Posição do efetuador final
passos/observação/robot0_eef_quat tensor (4,) float64 Orientação do efetuador final
passos/observação/robot0_eef_vel_ang tensor (3,) float64 Velocidade angular do efetor final
passos/observação/robot0_eef_vel_lin tensor (3,) float64 Velocidade cartesiana do efetor final
passos/observação/robot0_eye_in_hand_image Imagem (84, 84, 3) uint8
passos/observação/robot0_gripper_qpos tensor (2,) float64 Posição da garra
passos/observação/robot0_gripper_qvel tensor (2,) float64 Velocidade da garra
passos/observação/robot0_joint_pos tensor (7,) float64 7DOF posições conjuntas
passos/observação/robot0_joint_pos_cos tensor (7,) float64
passos/observação/robot0_joint_pos_sin tensor (7,) float64
passos/observação/robot0_joint_vel tensor (7,) float64 7DOF velocidades conjuntas
passos/recompensa tensor float64
passos/estados tensor (71,) float64
trem tensor bool
válido tensor bool

robomimic_ph/can_ph_low_dim

  • Tamanho do download : 43.38 MiB

  • Tamanho do conjunto de dados : 27.73 MiB

  • Cache automático ( documentação ): Sim

  • Estrutura de recursos :

FeaturesDict({
    '20_percent': bool,
    '20_percent_train': bool,
    '20_percent_valid': bool,
    '50_percent': bool,
    '50_percent_train': bool,
    '50_percent_valid': bool,
    'episode_id': string,
    'horizon': int32,
    'steps': Dataset({
        'action': Tensor(shape=(7,), dtype=float64),
        'discount': int32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': FeaturesDict({
            'object': Tensor(shape=(14,), dtype=float64),
            'robot0_eef_pos': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_quat': Tensor(shape=(4,), dtype=float64),
            'robot0_eef_vel_ang': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_vel_lin': Tensor(shape=(3,), dtype=float64),
            'robot0_gripper_qpos': Tensor(shape=(2,), dtype=float64),
            'robot0_gripper_qvel': Tensor(shape=(2,), dtype=float64),
            'robot0_joint_pos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_cos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_sin': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_vel': Tensor(shape=(7,), dtype=float64),
        }),
        'reward': float64,
        'states': Tensor(shape=(71,), dtype=float64),
    }),
    'train': bool,
    'valid': bool,
})
  • Documentação do recurso :
Recurso Aula Forma Tipo D Descrição
RecursosDict
20 porcento tensor bool
20_percent_train tensor bool
20_percent_valid tensor bool
50 por cento tensor bool
50_percent_train tensor bool
50_percent_valid tensor bool
episódio_id tensor corda
horizonte tensor int32
passos conjunto de dados
passos/ação tensor (7,) float64
passos/desconto tensor int32
passos/é_primeiro tensor bool
passos/é_último tensor bool
passos/is_terminal tensor bool
passos/observação RecursosDict
passos/observação/objeto tensor (14,) float64
passos/observação/robot0_eef_pos tensor (3,) float64 Posição do efetuador final
passos/observação/robot0_eef_quat tensor (4,) float64 Orientação do efetuador final
passos/observação/robot0_eef_vel_ang tensor (3,) float64 Velocidade angular do efetor final
passos/observação/robot0_eef_vel_lin tensor (3,) float64 Velocidade cartesiana do efetor final
passos/observação/robot0_gripper_qpos tensor (2,) float64 Posição da garra
passos/observação/robot0_gripper_qvel tensor (2,) float64 Velocidade da pinça
passos/observação/robot0_joint_pos tensor (7,) float64 7DOF posições conjuntas
passos/observação/robot0_joint_pos_cos tensor (7,) float64
passos/observação/robot0_joint_pos_sin tensor (7,) float64
passos/observação/robot0_joint_vel tensor (7,) float64 7DOF velocidades conjuntas
passos/recompensa tensor float64
passos/estados tensor (71,) float64
trem tensor bool
válido tensor bool

robomimic_ph/square_ph_image

  • Tamanho do download : 2.42 GiB

  • Tamanho do conjunto de dados : 401.28 MiB

  • Armazenado em cache automaticamente ( documentação ): Não

  • Estrutura de recursos :

FeaturesDict({
    '20_percent': bool,
    '20_percent_train': bool,
    '20_percent_valid': bool,
    '50_percent': bool,
    '50_percent_train': bool,
    '50_percent_valid': bool,
    'episode_id': string,
    'horizon': int32,
    'steps': Dataset({
        'action': Tensor(shape=(7,), dtype=float64),
        'discount': int32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': FeaturesDict({
            'agentview_image': Image(shape=(84, 84, 3), dtype=uint8),
            'object': Tensor(shape=(14,), dtype=float64),
            'robot0_eef_pos': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_quat': Tensor(shape=(4,), dtype=float64),
            'robot0_eef_vel_ang': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_vel_lin': Tensor(shape=(3,), dtype=float64),
            'robot0_eye_in_hand_image': Image(shape=(84, 84, 3), dtype=uint8),
            'robot0_gripper_qpos': Tensor(shape=(2,), dtype=float64),
            'robot0_gripper_qvel': Tensor(shape=(2,), dtype=float64),
            'robot0_joint_pos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_cos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_sin': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_vel': Tensor(shape=(7,), dtype=float64),
        }),
        'reward': float64,
        'states': Tensor(shape=(45,), dtype=float64),
    }),
    'train': bool,
    'valid': bool,
})
  • Documentação do recurso :
Recurso Aula Forma Tipo D Descrição
RecursosDict
20 porcento tensor bool
20_percent_train tensor bool
20_percent_valid tensor bool
50 por cento tensor bool
50_percent_train tensor bool
50_percent_valid tensor bool
episódio_id tensor corda
horizonte tensor int32
passos conjunto de dados
passos/ação tensor (7,) float64
passos/desconto tensor int32
passos/é_primeiro tensor bool
passos/é_último tensor bool
passos/is_terminal tensor bool
passos/observação RecursosDict
passos/observação/agentview_image Imagem (84, 84, 3) uint8
passos/observação/objeto tensor (14,) float64
passos/observação/robot0_eef_pos tensor (3,) float64 Posição do efetuador final
passos/observação/robot0_eef_quat tensor (4,) float64 Orientação do efetuador final
passos/observação/robot0_eef_vel_ang tensor (3,) float64 Velocidade angular do efetor final
passos/observação/robot0_eef_vel_lin tensor (3,) float64 Velocidade cartesiana do efetor final
passos/observação/robot0_eye_in_hand_image Imagem (84, 84, 3) uint8
passos/observação/robot0_gripper_qpos tensor (2,) float64 Posição da garra
passos/observação/robot0_gripper_qvel tensor (2,) float64 Velocidade da garra
passos/observação/robot0_joint_pos tensor (7,) float64 7DOF posições conjuntas
passos/observação/robot0_joint_pos_cos tensor (7,) float64
passos/observação/robot0_joint_pos_sin tensor (7,) float64
passos/observação/robot0_joint_vel tensor (7,) float64 7DOF velocidades conjuntas
passos/recompensa tensor float64
passos/estados tensor (45,) float64
trem tensor bool
válido tensor bool

robomimic_ph/square_ph_low_dim

  • Tamanho do download : 47.69 MiB

  • Tamanho do conjunto de dados : 29.91 MiB

  • Cache automático ( documentação ): Sim

  • Estrutura de recursos :

FeaturesDict({
    '20_percent': bool,
    '20_percent_train': bool,
    '20_percent_valid': bool,
    '50_percent': bool,
    '50_percent_train': bool,
    '50_percent_valid': bool,
    'episode_id': string,
    'horizon': int32,
    'steps': Dataset({
        'action': Tensor(shape=(7,), dtype=float64),
        'discount': int32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': FeaturesDict({
            'object': Tensor(shape=(14,), dtype=float64),
            'robot0_eef_pos': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_quat': Tensor(shape=(4,), dtype=float64),
            'robot0_eef_vel_ang': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_vel_lin': Tensor(shape=(3,), dtype=float64),
            'robot0_gripper_qpos': Tensor(shape=(2,), dtype=float64),
            'robot0_gripper_qvel': Tensor(shape=(2,), dtype=float64),
            'robot0_joint_pos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_cos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_sin': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_vel': Tensor(shape=(7,), dtype=float64),
        }),
        'reward': float64,
        'states': Tensor(shape=(45,), dtype=float64),
    }),
    'train': bool,
    'valid': bool,
})
  • Documentação do recurso :
Recurso Aula Forma Tipo D Descrição
RecursosDict
20 porcento tensor bool
20_percent_train tensor bool
20_percent_valid tensor bool
50 por cento tensor bool
50_percent_train tensor bool
50_percent_valid tensor bool
episódio_id tensor corda
horizonte tensor int32
passos conjunto de dados
passos/ação tensor (7,) float64
passos/desconto tensor int32
passos/é_primeiro tensor bool
passos/é_último tensor bool
passos/is_terminal tensor bool
passos/observação RecursosDict
passos/observação/objeto tensor (14,) float64
passos/observação/robot0_eef_pos tensor (3,) float64 Posição do efetuador final
passos/observação/robot0_eef_quat tensor (4,) float64 Orientação do efetuador final
passos/observação/robot0_eef_vel_ang tensor (3,) float64 Velocidade angular do efetor final
passos/observação/robot0_eef_vel_lin tensor (3,) float64 Velocidade cartesiana do efetor final
passos/observação/robot0_gripper_qpos tensor (2,) float64 Posição da garra
passos/observação/robot0_gripper_qvel tensor (2,) float64 Velocidade da pinça
passos/observação/robot0_joint_pos tensor (7,) float64 7DOF posições conjuntas
passos/observação/robot0_joint_pos_cos tensor (7,) float64
passos/observação/robot0_joint_pos_sin tensor (7,) float64
passos/observação/robot0_joint_vel tensor (7,) float64 7DOF velocidades conjuntas
passos/recompensa tensor float64
passos/estados tensor (45,) float64
trem tensor bool
válido tensor bool

robomimic_ph/transport_ph_image

  • Tamanho do download : 15.07 GiB

  • Tamanho do conjunto de dados : 3.64 GiB

  • Armazenado em cache automaticamente ( documentação ): Não

  • Estrutura de recursos :

FeaturesDict({
    '20_percent': bool,
    '20_percent_train': bool,
    '20_percent_valid': bool,
    '50_percent': bool,
    '50_percent_train': bool,
    '50_percent_valid': bool,
    'episode_id': string,
    'horizon': int32,
    'steps': Dataset({
        'action': Tensor(shape=(14,), dtype=float64),
        'discount': int32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': FeaturesDict({
            'object': Tensor(shape=(41,), dtype=float64),
            'robot0_eef_pos': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_quat': Tensor(shape=(4,), dtype=float64),
            'robot0_eef_vel_ang': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_vel_lin': Tensor(shape=(3,), dtype=float64),
            'robot0_eye_in_hand_image': Image(shape=(84, 84, 3), dtype=uint8),
            'robot0_gripper_qpos': Tensor(shape=(2,), dtype=float64),
            'robot0_gripper_qvel': Tensor(shape=(2,), dtype=float64),
            'robot0_joint_pos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_cos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_sin': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_vel': Tensor(shape=(7,), dtype=float64),
            'robot1_eef_pos': Tensor(shape=(3,), dtype=float64),
            'robot1_eef_quat': Tensor(shape=(4,), dtype=float64),
            'robot1_eef_vel_ang': Tensor(shape=(3,), dtype=float64),
            'robot1_eef_vel_lin': Tensor(shape=(3,), dtype=float64),
            'robot1_eye_in_hand_image': Image(shape=(84, 84, 3), dtype=uint8),
            'robot1_gripper_qpos': Tensor(shape=(2,), dtype=float64),
            'robot1_gripper_qvel': Tensor(shape=(2,), dtype=float64),
            'robot1_joint_pos': Tensor(shape=(7,), dtype=float64),
            'robot1_joint_pos_cos': Tensor(shape=(7,), dtype=float64),
            'robot1_joint_pos_sin': Tensor(shape=(7,), dtype=float64),
            'robot1_joint_vel': Tensor(shape=(7,), dtype=float64),
            'shouldercamera0_image': Image(shape=(84, 84, 3), dtype=uint8),
            'shouldercamera1_image': Image(shape=(84, 84, 3), dtype=uint8),
        }),
        'reward': float64,
        'states': Tensor(shape=(115,), dtype=float64),
    }),
    'train': bool,
    'valid': bool,
})
  • Documentação do recurso :
Recurso Aula Forma Tipo D Descrição
RecursosDict
20 porcento tensor bool
20_percent_train tensor bool
20_percent_valid tensor bool
50 por cento tensor bool
50_percent_train tensor bool
50_percent_valid tensor bool
episódio_id tensor corda
horizonte tensor int32
passos conjunto de dados
passos/ação tensor (14,) float64
passos/desconto tensor int32
passos/é_primeiro tensor bool
passos/é_último tensor bool
passos/is_terminal tensor bool
passos/observação RecursosDict
passos/observação/objeto tensor (41,) float64
passos/observação/robot0_eef_pos tensor (3,) float64 Posição do efetuador final
passos/observação/robot0_eef_quat tensor (4,) float64 Orientação do efetuador final
passos/observação/robot0_eef_vel_ang tensor (3,) float64 Velocidade angular do efetor final
passos/observação/robot0_eef_vel_lin tensor (3,) float64 Velocidade cartesiana do efetor final
passos/observação/robot0_eye_in_hand_image Imagem (84, 84, 3) uint8
passos/observação/robot0_gripper_qpos tensor (2,) float64 Posição da garra
passos/observação/robot0_gripper_qvel tensor (2,) float64 Velocidade da garra
passos/observação/robot0_joint_pos tensor (7,) float64 7DOF posições conjuntas
passos/observação/robot0_joint_pos_cos tensor (7,) float64
passos/observação/robot0_joint_pos_sin tensor (7,) float64
passos/observação/robot0_joint_vel tensor (7,) float64 7DOF velocidades conjuntas
passos/observação/robot1_eef_pos tensor (3,) float64 Posição do efetuador final
passos/observação/robot1_eef_quat tensor (4,) float64 Orientação do efetuador final
passos/observação/robot1_eef_vel_ang tensor (3,) float64 Velocidade angular do efetor final
passos/observação/robot1_eef_vel_lin tensor (3,) float64 Velocidade cartesiana do efetor final
passos/observação/robot1_eye_in_hand_image Imagem (84, 84, 3) uint8
passos/observação/robot1_gripper_qpos tensor (2,) float64 Posição da garra
passos/observação/robot1_gripper_qvel tensor (2,) float64 Velocidade da garra
passos/observação/robot1_joint_pos tensor (7,) float64 7DOF posições conjuntas
passos/observação/robot1_joint_pos_cos tensor (7,) float64
passos/observação/robot1_joint_pos_sin tensor (7,) float64
passos/observação/robot1_joint_vel tensor (7,) float64 7DOF velocidades conjuntas
passos/observação/shouldercamera0_image Imagem (84, 84, 3) uint8
passos/observação/shouldercamera1_image Imagem (84, 84, 3) uint8
passos/recompensa tensor float64
passos/estados tensor (115,) float64
trem tensor bool
válido tensor bool

robomimic_ph/transport_ph_low_dim

  • Tamanho do download : 294.70 MiB

  • Tamanho do conjunto de dados : 208.05 MiB

  • Cache automático ( documentação ): Somente quando shuffle_files=False (train)

  • Estrutura de recursos :

FeaturesDict({
    '20_percent': bool,
    '20_percent_train': bool,
    '20_percent_valid': bool,
    '50_percent': bool,
    '50_percent_train': bool,
    '50_percent_valid': bool,
    'episode_id': string,
    'horizon': int32,
    'steps': Dataset({
        'action': Tensor(shape=(14,), dtype=float64),
        'discount': int32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': FeaturesDict({
            'object': Tensor(shape=(41,), dtype=float64),
            'robot0_eef_pos': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_quat': Tensor(shape=(4,), dtype=float64),
            'robot0_eef_vel_ang': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_vel_lin': Tensor(shape=(3,), dtype=float64),
            'robot0_gripper_qpos': Tensor(shape=(2,), dtype=float64),
            'robot0_gripper_qvel': Tensor(shape=(2,), dtype=float64),
            'robot0_joint_pos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_cos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_sin': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_vel': Tensor(shape=(7,), dtype=float64),
            'robot1_eef_pos': Tensor(shape=(3,), dtype=float64),
            'robot1_eef_quat': Tensor(shape=(4,), dtype=float64),
            'robot1_eef_vel_ang': Tensor(shape=(3,), dtype=float64),
            'robot1_eef_vel_lin': Tensor(shape=(3,), dtype=float64),
            'robot1_gripper_qpos': Tensor(shape=(2,), dtype=float64),
            'robot1_gripper_qvel': Tensor(shape=(2,), dtype=float64),
            'robot1_joint_pos': Tensor(shape=(7,), dtype=float64),
            'robot1_joint_pos_cos': Tensor(shape=(7,), dtype=float64),
            'robot1_joint_pos_sin': Tensor(shape=(7,), dtype=float64),
            'robot1_joint_vel': Tensor(shape=(7,), dtype=float64),
        }),
        'reward': float64,
        'states': Tensor(shape=(115,), dtype=float64),
    }),
    'train': bool,
    'valid': bool,
})
  • Documentação do recurso :
Recurso Aula Forma Tipo D Descrição
RecursosDict
20 porcento tensor bool
20_percent_train tensor bool
20_percent_valid tensor bool
50 por cento tensor bool
50_percent_train tensor bool
50_percent_valid tensor bool
episódio_id tensor corda
horizonte tensor int32
passos conjunto de dados
passos/ação tensor (14,) float64
passos/desconto tensor int32
passos/é_primeiro tensor bool
passos/é_último tensor bool
passos/is_terminal tensor bool
passos/observação RecursosDict
passos/observação/objeto tensor (41,) float64
passos/observação/robot0_eef_pos tensor (3,) float64 Posição do efetuador final
passos/observação/robot0_eef_quat tensor (4,) float64 Orientação do efetuador final
passos/observação/robot0_eef_vel_ang tensor (3,) float64 Velocidade angular do efetor final
passos/observação/robot0_eef_vel_lin tensor (3,) float64 Velocidade cartesiana do efetor final
passos/observação/robot0_gripper_qpos tensor (2,) float64 Posição da garra
passos/observação/robot0_gripper_qvel tensor (2,) float64 Velocidade da pinça
passos/observação/robot0_joint_pos tensor (7,) float64 7DOF posições conjuntas
passos/observação/robot0_joint_pos_cos tensor (7,) float64
passos/observação/robot0_joint_pos_sin tensor (7,) float64
passos/observação/robot0_joint_vel tensor (7,) float64 7DOF velocidades conjuntas
passos/observação/robot1_eef_pos tensor (3,) float64 Posição do efetuador final
passos/observação/robot1_eef_quat tensor (4,) float64 Orientação do efetuador final
passos/observação/robot1_eef_vel_ang tensor (3,) float64 Velocidade angular do efetor final
passos/observação/robot1_eef_vel_lin tensor (3,) float64 Velocidade cartesiana do efetor final
passos/observação/robot1_gripper_qpos tensor (2,) float64 Posição da garra
passos/observação/robot1_gripper_qvel tensor (2,) float64 Velocidade da garra
passos/observação/robot1_joint_pos tensor (7,) float64 7DOF posições conjuntas
passos/observação/robot1_joint_pos_cos tensor (7,) float64
passos/observação/robot1_joint_pos_sin tensor (7,) float64
passos/observação/robot1_joint_vel tensor (7,) float64 7DOF velocidades conjuntas
passos/recompensa tensor float64
passos/estados tensor (115,) float64
trem tensor bool
válido tensor bool

robomimic_ph/tool_hang_ph_image

  • Tamanho do download : 61.96 GiB

  • Tamanho do conjunto de dados : 9.10 GiB

  • Armazenado em cache automaticamente ( documentação ): Não

  • Estrutura de recursos :

FeaturesDict({
    'episode_id': string,
    'horizon': int32,
    'steps': Dataset({
        'action': Tensor(shape=(7,), dtype=float64),
        'discount': int32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': FeaturesDict({
            'object': Tensor(shape=(44,), dtype=float64),
            'robot0_eef_pos': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_quat': Tensor(shape=(4,), dtype=float64),
            'robot0_eef_vel_ang': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_vel_lin': Tensor(shape=(3,), dtype=float64),
            'robot0_eye_in_hand_image': Image(shape=(240, 240, 3), dtype=uint8),
            'robot0_gripper_qpos': Tensor(shape=(2,), dtype=float64),
            'robot0_gripper_qvel': Tensor(shape=(2,), dtype=float64),
            'robot0_joint_pos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_cos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_sin': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_vel': Tensor(shape=(7,), dtype=float64),
            'sideview_image': Image(shape=(240, 240, 3), dtype=uint8),
        }),
        'reward': float64,
        'states': Tensor(shape=(58,), dtype=float64),
    }),
    'train': bool,
    'valid': bool,
})
  • Documentação do recurso :
Recurso Aula Forma Tipo D Descrição
RecursosDict
episódio_id tensor corda
horizonte tensor int32
passos conjunto de dados
passos/ação tensor (7,) float64
passos/desconto tensor int32
passos/é_primeiro tensor bool
passos/é_último Tensor bool
steps/is_terminal Tensor bool
steps/observation FeaturesDict
steps/observation/object Tensor (44,) float64
steps/observation/robot0_eef_pos Tensor (3,) float64 End-effector position
steps/observation/robot0_eef_quat Tensor (4,) float64 End-effector orientation
steps/observation/robot0_eef_vel_ang Tensor (3,) float64 End-effector angular velocity
steps/observation/robot0_eef_vel_lin Tensor (3,) float64 End-effector cartesian velocity
steps/observation/robot0_eye_in_hand_image Image (240, 240, 3) uint8
steps/observation/robot0_gripper_qpos Tensor (2,) float64 Gripper position
steps/observation/robot0_gripper_qvel Tensor (2,) float64 Gripper velocity
steps/observation/robot0_joint_pos Tensor (7,) float64 7DOF joint positions
steps/observation/robot0_joint_pos_cos Tensor (7,) float64
steps/observation/robot0_joint_pos_sin Tensor (7,) float64
steps/observation/robot0_joint_vel Tensor (7,) float64 7DOF joint velocities
steps/observation/sideview_image Image (240, 240, 3) uint8
steps/reward Tensor float64
steps/states Tensor (58,) float64
train Tensor bool
valid Tensor bool

robomimic_ph/tool_hang_ph_low_dim

  • Download size : 192.29 MiB

  • Dataset size : 121.77 MiB

  • Auto-cached ( documentation ): Yes

  • Feature structure :

FeaturesDict({
    'episode_id': string,
    'horizon': int32,
    'steps': Dataset({
        'action': Tensor(shape=(7,), dtype=float64),
        'discount': int32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': FeaturesDict({
            'object': Tensor(shape=(44,), dtype=float64),
            'robot0_eef_pos': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_quat': Tensor(shape=(4,), dtype=float64),
            'robot0_eef_vel_ang': Tensor(shape=(3,), dtype=float64),
            'robot0_eef_vel_lin': Tensor(shape=(3,), dtype=float64),
            'robot0_gripper_qpos': Tensor(shape=(2,), dtype=float64),
            'robot0_gripper_qvel': Tensor(shape=(2,), dtype=float64),
            'robot0_joint_pos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_cos': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_pos_sin': Tensor(shape=(7,), dtype=float64),
            'robot0_joint_vel': Tensor(shape=(7,), dtype=float64),
        }),
        'reward': float64,
        'states': Tensor(shape=(58,), dtype=float64),
    }),
    'train': bool,
    'valid': bool,
})
  • Feature documentation :
Feature Class Shape Dtype Description
FeaturesDict
episode_id Tensor string
horizon Tensor int32
steps Dataset
steps/action Tensor (7,) float64
steps/discount Tensor int32
steps/is_first Tensor bool
steps/is_last Tensor bool
steps/is_terminal Tensor bool
steps/observation FeaturesDict
steps/observation/object Tensor (44,) float64
steps/observation/robot0_eef_pos Tensor (3,) float64 End-effector position
steps/observation/robot0_eef_quat Tensor (4,) float64 End-effector orientation
steps/observation/robot0_eef_vel_ang Tensor (3,) float64 End-effector angular velocity
steps/observation/robot0_eef_vel_lin Tensor (3,) float64 End-effector cartesian velocity
steps/observation/robot0_gripper_qpos Tensor (2,) float64 Gripper position
steps/observation/robot0_gripper_qvel Tensor (2,) float64 Gripper velocity
steps/observation/robot0_joint_pos Tensor (7,) float64 7DOF joint positions
steps/observation/robot0_joint_pos_cos Tensor (7,) float64
steps/observation/robot0_joint_pos_sin Tensor (7,) float64
steps/observation/robot0_joint_vel Tensor (7,) float64 7DOF joint velocities
steps/reward Tensor float64
steps/states Tensor (58,) float64
train Tensor bool
valid Tensor bool