- Descrição :
Conjunto de dados massivamente multilíngue (60 idiomas) derivado de transcrições do TED Talk. Cada registro consiste em matrizes paralelas de idioma e texto. Traduções ausentes e incompletas serão filtradas.
Página inicial : https://github.com/neulab/word-embeddings-for-nmt
Código -fonte:
tfds.datasets.ted_multi_translate.Builder
Versões :
-
1.1.0
(padrão): sem notas de versão.
-
Tamanho do download :
335.91 MiB
Tamanho do conjunto de dados :
752.30 MiB
Armazenado em cache automaticamente ( documentação ): Não
Divisões :
Dividir | Exemplos |
---|---|
'test' | 7.213 |
'train' | 258.098 |
'validation' | 6.049 |
- Estrutura de recursos :
FeaturesDict({
'talk_name': Text(shape=(), dtype=string),
'translations': TranslationVariableLanguages({
'language': Text(shape=(), dtype=string),
'translation': Text(shape=(), dtype=string),
}),
})
- Documentação do recurso:
Recurso | Aula | Forma | Tipo D | Descrição |
---|---|---|---|---|
RecursosDict | ||||
talk_name | Texto | corda | ||
traduções | TranslationVariableLanguages | |||
traduções/idioma | Texto | corda | ||
traduções/tradução | Texto | corda |
Chaves supervisionadas (Consulte
as_supervised
doc ):None
Figura ( tfds.show_examples ): Não compatível.
Exemplos ( tfds.as_dataframe ):
- Citação :
@InProceedings{qi-EtAl:2018:N18-2,
author = {Qi, Ye and Sachan, Devendra and Felix, Matthieu and Padmanabhan, Sarguna and Neubig, Graham},
title = {When and Why Are Pre-Trained Word Embeddings Useful for Neural Machine Translation?},
booktitle = {Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)},
month = {June},
year = {2018},
address = {New Orleans, Louisiana},
publisher = {Association for Computational Linguistics},
pages = {529--535},
abstract = {The performance of Neural Machine Translation (NMT) systems often suffers in low-resource scenarios where sufficiently large-scale parallel corpora cannot be obtained. Pre-trained word embeddings have proven to be invaluable for improving performance in natural language analysis tasks, which often suffer from paucity of data. However, their utility for NMT has not been extensively explored. In this work, we perform five sets of experiments that analyze when we can expect pre-trained word embeddings to help in NMT tasks. We show that such embeddings can be surprisingly effective in some cases -- providing gains of up to 20 BLEU points in the most favorable setting.},
url = {http://www.aclweb.org/anthology/N18-2084}
}
, - Descrição :
Conjunto de dados massivamente multilíngue (60 idiomas) derivado de transcrições do TED Talk. Cada registro consiste em matrizes paralelas de idioma e texto. Traduções ausentes e incompletas serão filtradas.
Página inicial : https://github.com/neulab/word-embeddings-for-nmt
Código -fonte:
tfds.datasets.ted_multi_translate.Builder
Versões :
-
1.1.0
(padrão): sem notas de versão.
-
Tamanho do download :
335.91 MiB
Tamanho do conjunto de dados :
752.30 MiB
Armazenado em cache automaticamente ( documentação ): Não
Divisões :
Dividir | Exemplos |
---|---|
'test' | 7.213 |
'train' | 258.098 |
'validation' | 6.049 |
- Estrutura de recursos :
FeaturesDict({
'talk_name': Text(shape=(), dtype=string),
'translations': TranslationVariableLanguages({
'language': Text(shape=(), dtype=string),
'translation': Text(shape=(), dtype=string),
}),
})
- Documentação do recurso:
Recurso | Aula | Forma | Tipo D | Descrição |
---|---|---|---|---|
RecursosDict | ||||
talk_name | Texto | corda | ||
traduções | TranslationVariableLanguages | |||
traduções/idioma | Texto | corda | ||
traduções/tradução | Texto | corda |
Chaves supervisionadas (Consulte
as_supervised
doc ):None
Figura ( tfds.show_examples ): Não compatível.
Exemplos ( tfds.as_dataframe ):
- Citação :
@InProceedings{qi-EtAl:2018:N18-2,
author = {Qi, Ye and Sachan, Devendra and Felix, Matthieu and Padmanabhan, Sarguna and Neubig, Graham},
title = {When and Why Are Pre-Trained Word Embeddings Useful for Neural Machine Translation?},
booktitle = {Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)},
month = {June},
year = {2018},
address = {New Orleans, Louisiana},
publisher = {Association for Computational Linguistics},
pages = {529--535},
abstract = {The performance of Neural Machine Translation (NMT) systems often suffers in low-resource scenarios where sufficiently large-scale parallel corpora cannot be obtained. Pre-trained word embeddings have proven to be invaluable for improving performance in natural language analysis tasks, which often suffer from paucity of data. However, their utility for NMT has not been extensively explored. In this work, we perform five sets of experiments that analyze when we can expect pre-trained word embeddings to help in NMT tasks. We show that such embeddings can be surprisingly effective in some cases -- providing gains of up to 20 BLEU points in the most favorable setting.},
url = {http://www.aclweb.org/anthology/N18-2084}
}