Referencias:
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:conceptual_captions')
- Descripción :
Image captioning dataset
The resulting dataset (version 1.1) has been split into Training, Validation, and Test splits. The Training split consists of 3,318,333 image-URL/caption pairs, with a total number of 51,201 total token types in the captions (i.e., total vocabulary). The average number of tokens per captions is 10.3 (standard deviation of 4.5), while the median is 9.0 tokens per caption. The Validation split consists of 15,840 image-URL/caption pairs, with similar statistics.
- Licencia : Sin licencia conocida
- Versión : 1.1.0
- Divisiones :
Separar | Ejemplos |
---|---|
'train' | 3318333 |
'validation' | 15840 |
- Características :
{
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"caption": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"url": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
sin etiquetar
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:conceptual_captions/unlabeled')
- Descripción :
Google's Conceptual Captions dataset has more than 3 million images, paired with natural-language captions.
In contrast with the curated style of the MS-COCO images, Conceptual Captions images and their raw descriptions are harvested from the web,
and therefore represent a wider variety of styles. The raw descriptions are harvested from the Alt-text HTML attribute associated with web images.
The authors developed an automatic pipeline that extracts, filters, and transforms candidate image/caption pairs, with the goal of achieving a balance of cleanliness,
informativeness, fluency, and learnability of the resulting captions.
Licencia : el conjunto de datos se puede utilizar libremente para cualquier propósito, aunque se agradecería el reconocimiento de Google LLC ("Google") como fuente de datos. El conjunto de datos se proporciona "TAL CUAL" sin ninguna garantía, expresa o implícita. Google se exime de toda responsabilidad por cualquier daño, directo o indirecto, que resulte del uso del conjunto de datos.
Versión : 0.0.0
Divisiones :
Separar | Ejemplos |
---|---|
'train' | 3318333 |
'validation' | 15840 |
- Características :
{
"image_url": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"caption": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
etiquetado
Utilice el siguiente comando para cargar este conjunto de datos en TFDS:
ds = tfds.load('huggingface:conceptual_captions/labeled')
- Descripción :
Google's Conceptual Captions dataset has more than 3 million images, paired with natural-language captions.
In contrast with the curated style of the MS-COCO images, Conceptual Captions images and their raw descriptions are harvested from the web,
and therefore represent a wider variety of styles. The raw descriptions are harvested from the Alt-text HTML attribute associated with web images.
The authors developed an automatic pipeline that extracts, filters, and transforms candidate image/caption pairs, with the goal of achieving a balance of cleanliness,
informativeness, fluency, and learnability of the resulting captions.
Licencia : el conjunto de datos se puede utilizar libremente para cualquier propósito, aunque se agradecería el reconocimiento de Google LLC ("Google") como fuente de datos. El conjunto de datos se proporciona "TAL CUAL" sin ninguna garantía, expresa o implícita. Google se exime de toda responsabilidad por cualquier daño, directo o indirecto, que resulte del uso del conjunto de datos.
Versión : 0.0.0
Divisiones :
Separar | Ejemplos |
---|---|
'train' | 2007090 |
- Características :
{
"image_url": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"caption": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"labels": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"MIDs": {
"feature": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
},
"confidence_scores": {
"feature": {
"dtype": "float64",
"id": null,
"_type": "Value"
},
"length": -1,
"id": null,
"_type": "Sequence"
}
}