tfg.datasets.features.TriangleMesh

FeatureConnector for triangle meshes.

During _generate_examples, the feature connector accepts as input any of:

  • str: path to a {obj,stl,ply,glb} triangle mesh.
  • trimesh.Trimesh: A triangle mesh object.
  • trimesh.Scene: A scene object containing multiple TriangleMesh objects.
  • dict: A dictionary containing the vertices and faces of the mesh (see output format below).

A dictionary containing:

texture coordinates).

  • 'vertices': A float32 tensor with shape [N, 3] denoting the vertex coordinates, where N is the number of vertices in the mesh.

  • 'faces': An int64 tensor with shape [F, 3] denoting the face vertex indices, where F is the number of faces in the mesh.

Note In case the input specifies a Scene (with multiple meshes), the output will be a single TriangleMesh which combines all the triangle meshes in the scene.

feature_dict (dict): Dictionary containing the feature connectors of a example. The keys should correspond to the data dict as returned by tf.data.Dataset(). Types (np.int32,...) and dicts will automatically be converted into FeatureConnector.
doc Documentation of this feature (e.g. description).

ValueError If one of the given features is not recognized

doc

dtype Return the dtype (or dict of dtype) of this FeatureConnector.
flat_features

flat_sequence_ranks

flat_serialized_info

np_dtype

numpy_dtype

shape Return the shape (or dict of shape) of this FeatureConnector.
tf_dtype

tf_example_spec Returns the tf.Example proto structure.

Methods

catalog_documentation

Returns the feature documentation to be shown in the catalog.

cls_from_name

Returns the feature class for the given Python class.

decode_batch_example

Decode multiple features batched in a single tf.Tensor.

This function is used to decode features wrapped in tfds.features.Sequence(). By default, this function apply decode_example on each individual elements using tf.map_fn. However, for optimization, features can overwrite this method to apply a custom batch decoding.

Args
tfexample_data Same tf.Tensor inputs as decode_example, but with and additional first dimension for the sequence length.

Returns
tensor_data Tensor or dictionary of tensor, output of the tf.data.Dataset object

decode_example

Decode the feature dict to TF compatible input.

Args
tfexample_data Data or dictionary of data, as read by the tf-example reader. It correspond to the tf.Tensor() (or dict of tf.Tensor()) extracted from the tf.train.Example, matching the info defined in get_serialized_info().

Returns
tensor_data Tensor or dictionary of tensor, output of the tf.data.Dataset object

decode_example_np

Encode the feature dict into NumPy-compatible input.

Args
example_data Value to convert to NumPy.

Returns
np_data Data as NumPy-compatible type: either a Python primitive (bytes, int, etc) or a NumPy array.

decode_ragged_example

Decode nested features from a tf.RaggedTensor.

This function is used to decode features wrapped in nested tfds.features.Sequence(). By default, this function apply decode_batch_example on the flat values of the ragged tensor. For optimization, features can overwrite this method to apply a custom batch decoding.

Args
tfexample_data tf.RaggedTensor inputs containing the nested encoded examples.

Returns
tensor_data The decoded tf.RaggedTensor or dictionary of tensor, output of the tf.data.Dataset object

deserialize_example

Decodes the tf.train.Example data into tf.Tensor.

See serialize_example to encode the data into proto.

Args
serialized_example The tensor-like object containing the serialized tf.train.Example proto.
decoders Eventual decoders to apply (see documentation)

Returns
The decoded features tensors.

deserialize_example_np

encode_example

View source

Convert the given triangle mesh into a dict convertible to tf example.

from_config

Reconstructs the FeatureConnector from the config file.

Usage:

features = FeatureConnector.from_config('path/to/dir')

Args
root_dir Directory containing the features.json file.

Returns
The reconstructed feature instance.

from_json

FeatureConnector factory.

This function should be called from the tfds.features.FeatureConnector base class. Subclass should implement the from_json_content.

Example:

feature = tfds.features.FeatureConnector.from_json(
    {'type': 'Image', 'content': {'shape': [32, 32, 3], 'dtype': 'uint8'} }
)
assert isinstance(feature, tfds.features.Image)

Args
value dict(type=, content=) containing the feature to restore. Match dict returned by to_json.

Returns
The reconstructed FeatureConnector.

from_json_content

View source

FeatureConnector factory (to overwrite).

Subclasses should overwrite this method. This method is used when importing the feature connector from the config.

This function should not be called directly. FeatureConnector.from_json should be called instead.

See existing FeatureConnectors for implementation examples.

Args
value FeatureConnector information represented as either Json or a Feature proto. The content must match what is returned by to_json_content.
doc Documentation of this feature (e.g. description).

Returns
The reconstructed FeatureConnector.

from_proto

Instantiates a feature from its proto representation.

get_serialized_info

See base class for details.

get_tensor_info

See base class for details.

get_tensor_spec

Returns the tf.TensorSpec of this feature (not the element spec!).

Note that the output of this method may not correspond to the element spec of the dataset. For example, currently this method does not support RaggedTensorSpec.

items

keys

load_metadata

See base class for details.

repr_html

Returns the HTML str representation of the object.

repr_html_batch

Returns the HTML str representation of the object (Sequence).

repr_html_ragged

Returns the HTML str representation of the object (Nested sequence).

save_config

Exports the FeatureConnector to a file.

Args
root_dir path/to/dir containing the features.json

save_metadata

See base class for details.

serialize_example

Encodes nested data values into tf.train.Example bytes.

See deserialize_example to decode the proto into tf.Tensor.

Args
example_data Example data to encode (numpy-like nested dict)

Returns
The serialized tf.train.Example.

to_json

Exports the FeatureConnector to Json.

Each feature is serialized as a dict(type=..., content=...).

  • type: The cannonical name of the feature (module.FeatureName).
  • content: is specific to each feature connector and defined in to_json_content. Can contain nested sub-features (like for tfds.features.FeaturesDict and tfds.features.Sequence).

For example:

tfds.features.FeaturesDict({
    'input': tfds.features.Image(),
    'target': tfds.features.ClassLabel(num_classes=10),
})

Is serialized as:

{
    "type": "tensorflow_datasets.core.features.features_dict.FeaturesDict",
    "content": {
        "input": {
            "type": "tensorflow_datasets.core.features.image_feature.Image",
            "content": {
                "shape": [null, null, 3],
                "dtype": "uint8",
                "encoding_format": "png"
            }
        },
        "target": {
            "type":
            "tensorflow_datasets.core.features.class_label_feature.ClassLabel",
            "content": {
              "num_classes": 10
            }
        }
    }
}

Returns
A dict(type=, content=). Will be forwarded to from_json when reconstructing the feature.

to_json_content

View source

FeatureConnector factory (to overwrite).

This function should be overwritten by the subclass to allow re-importing the feature connector from the config. See existing FeatureConnector for example of implementation.

Returns
The FeatureConnector metadata in either a dict, or a Feature proto. This output is used in from_json_content when reconstructing the feature.

to_proto

Exports the FeatureConnector to the Feature proto.

For features that have a specific schema defined in a proto, this function needs to be overriden. If there's no specific proto schema, then the feature will be represented using JSON.

Returns
The feature proto describing this feature.

values

__contains__

__getitem__

Return the feature associated with the key.

__iter__

__len__

ALIASES []