View source on GitHub
|
This module implements 2d rotation matrix functionalities.
Given an angle of rotation \(\theta\) a 2d rotation matrix can be expressed as
\[ \mathbf{R} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}. \]
More details rotation matrices can be found on this page.
Functions
from_euler(...): Converts an angle to a 2d rotation matrix.
from_euler_with_small_angles_approximation(...): Converts an angle to a 2d rotation matrix under the small angle assumption.
inverse(...): Computes the inverse of a 2D rotation matrix.
is_valid(...): Determines if a matrix is a valid rotation matrix.
rotate(...): Rotates a 2d point using a 2d rotation matrix.
View source on GitHub