tfg.math.interpolation.slerp.vector_weights
Stay organized with collections
Save and categorize content based on your preferences.
Spherical linear interpolation (slerp) between two unnormalized vectors.
tfg.math.interpolation.slerp.vector_weights(
vector1: type_alias.TensorLike,
vector2: type_alias.TensorLike,
percent: Union[type_alias.Float, type_alias.TensorLike],
eps: Optional[type_alias.Float] = None,
name: str = 'vector_weights'
) -> Tuple[tf.Tensor, tf.Tensor]
This function applies geometric slerp to unnormalized vectors by first
normalizing them to return the interpolation weights. It reduces to lerp when
input vectors are exactly anti-parallel.
Note |
In the following, A1 to An are optional batch dimensions.
|
Args |
vector1
|
A tensor of shape [A1, ... , An, M] , which stores a normalized
vector in its last dimension.
|
vector2
|
A tensor of shape [A1, ... , An, M] , which stores a normalized
vector in its last dimension.
|
percent
|
A float or tensor with shape broadcastable to the shape of input
vectors.
|
eps
|
A small float for operation safety. If left None, its value is
automatically selected using dtype of input vectors.
|
name
|
A name for this op. Defaults to "vector_weights".
|
Raises |
ValueError
|
if the shape of vector1 , vector2 , or percent is not
supported.
|
Returns |
Two tensors of shape [A1, ... , An, 1] , representing interpolation weights
for each input vector.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2022-10-28 UTC.
[null,null,["Last updated 2022-10-28 UTC."],[],[],null,["# tfg.math.interpolation.slerp.vector_weights\n\n\u003cbr /\u003e\n\n|---------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/graphics/blob/master/tensorflow_graphics/math/interpolation/slerp.py#L223-L280) |\n\nSpherical linear interpolation (slerp) between two unnormalized vectors. \n\n tfg.math.interpolation.slerp.vector_weights(\n vector1: type_alias.TensorLike,\n vector2: type_alias.TensorLike,\n percent: Union[type_alias.Float, type_alias.TensorLike],\n eps: Optional[type_alias.Float] = None,\n name: str = 'vector_weights'\n ) -\u003e Tuple[tf.Tensor, tf.Tensor]\n\nThis function applies geometric slerp to unnormalized vectors by first\nnormalizing them to return the interpolation weights. It reduces to lerp when\ninput vectors are exactly anti-parallel.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Note ---- ||\n|---|---|\n| In the following, A1 to An are optional batch dimensions. ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-----------|---------------------------------------------------------------------------------------------------------------------|\n| `vector1` | A tensor of shape `[A1, ... , An, M]`, which stores a normalized vector in its last dimension. |\n| `vector2` | A tensor of shape `[A1, ... , An, M]`, which stores a normalized vector in its last dimension. |\n| `percent` | A `float` or tensor with shape broadcastable to the shape of input vectors. |\n| `eps` | A small float for operation safety. If left None, its value is automatically selected using dtype of input vectors. |\n| `name` | A name for this op. Defaults to \"vector_weights\". |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|--------------|----------------------------------------------------------------------|\n| `ValueError` | if the shape of `vector1`, `vector2`, or `percent` is not supported. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| Two tensors of shape `[A1, ... , An, 1]`, representing interpolation weights for each input vector. ||\n\n\u003cbr /\u003e"]]