tfg.math.interpolation.trilinear.interpolate
Stay organized with collections
Save and categorize content based on your preferences.
Trilinear interpolation on a 3D regular grid.
tfg.math.interpolation.trilinear.interpolate(
grid_3d: type_alias.TensorLike,
sampling_points: type_alias.TensorLike,
name: str = 'trilinear_interpolate'
) -> tf.Tensor
Args |
grid_3d
|
A tensor with shape [A1, ..., An, H, W, D, C] where H, W, D are
height, width, depth of the grid and C is the number of channels.
|
sampling_points
|
A tensor with shape [A1, ..., An, M, 3] where M is the
number of sampling points. Sampling points outside the grid are projected
in the grid borders.
|
name
|
A name for this op that defaults to "trilinear_interpolate".
|
Returns |
A tensor of shape [A1, ..., An, M, C]
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2022-10-28 UTC.
[null,null,["Last updated 2022-10-28 UTC."],[],[],null,["# tfg.math.interpolation.trilinear.interpolate\n\n\u003cbr /\u003e\n\n|-----------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/graphics/blob/master/tensorflow_graphics/math/interpolation/trilinear.py#L27-L96) |\n\nTrilinear interpolation on a 3D regular grid. \n\n tfg.math.interpolation.trilinear.interpolate(\n grid_3d: type_alias.TensorLike,\n sampling_points: type_alias.TensorLike,\n name: str = 'trilinear_interpolate'\n ) -\u003e tf.Tensor\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `grid_3d` | A tensor with shape `[A1, ..., An, H, W, D, C]` where H, W, D are height, width, depth of the grid and C is the number of channels. |\n| `sampling_points` | A tensor with shape `[A1, ..., An, M, 3]` where M is the number of sampling points. Sampling points outside the grid are projected in the grid borders. |\n| `name` | A name for this op that defaults to \"trilinear_interpolate\". |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A tensor of shape `[A1, ..., An, M, C]` ||\n\n\u003cbr /\u003e"]]