tfg.math.spherical_harmonics.evaluate_legendre_polynomial
Stay organized with collections
Save and categorize content based on your preferences.
Evaluates the Legendre polynomial of degree l and order m at x.
tfg.math.spherical_harmonics.evaluate_legendre_polynomial(
degree_l: TensorLike, order_m: TensorLike, x: TensorLike
) -> TensorLike
Note |
This function is implementing the algorithm described in p. 10 of Spherical
Harmonic Lighting: The Gritty Details .
|
Note |
In the following, A1 to An are optional batch dimensions.
|
Args |
degree_l
|
An integer tensor of shape [A1, ..., An] corresponding to the
degree of the associated Legendre polynomial. Note that degree_l must be
non-negative.
|
order_m
|
An integer tensor of shape [A1, ..., An] corresponding to the
order of the associated Legendre polynomial. Note that order_m must
satisfy 0 <= order_m <= l .
|
x
|
A tensor of shape [A1, ..., An] with values in [-1,1].
|
Returns |
A tensor of shape [A1, ..., An] containing the evaluation of the legendre
polynomial.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2022-10-28 UTC.
[null,null,["Last updated 2022-10-28 UTC."],[],[],null,["# tfg.math.spherical_harmonics.evaluate_legendre_polynomial\n\n\u003cbr /\u003e\n\n|---------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/graphics/blob/master/tensorflow_graphics/math/spherical_harmonics.py#L164-L209) |\n\nEvaluates the Legendre polynomial of degree l and order m at x. \n\n tfg.math.spherical_harmonics.evaluate_legendre_polynomial(\n degree_l: TensorLike, order_m: TensorLike, x: TensorLike\n ) -\u003e TensorLike\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Note ---- ||\n|---|---|\n| This function is implementing the algorithm described in p. 10 of `Spherical Harmonic Lighting: The Gritty Details`. ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Note ---- ||\n|---|---|\n| In the following, A1 to An are optional batch dimensions. ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `degree_l` | An integer tensor of shape `[A1, ..., An]` corresponding to the degree of the associated Legendre polynomial. Note that `degree_l` must be non-negative. |\n| `order_m` | An integer tensor of shape `[A1, ..., An]` corresponding to the order of the associated Legendre polynomial. Note that `order_m` must satisfy `0 \u003c= order_m \u003c= l`. |\n| `x` | A tensor of shape `[A1, ..., An]` with values in \\[-1,1\\]. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A tensor of shape `[A1, ..., An]` containing the evaluation of the legendre polynomial. ||\n\n\u003cbr /\u003e"]]