@article{beyer2020imagenet,
title={Are we done with ImageNet?},
author={Lucas Beyer and Olivier J. Henaff and Alexander Kolesnikov and Xiaohua Zhai and Aaron van den Oord},
journal={arXiv preprint arXiv:2002.05709},
year={2020}
}
@article{ILSVRC15,
Author={Olga Russakovsky and Jia Deng and Hao Su and Jonathan Krause and Sanjeev Satheesh and Sean Ma and Zhiheng Huang and Andrej Karpathy and Aditya Khosla and Michael Bernstein and Alexander C. Berg and Li Fei-Fei},
Title={ {ImageNet Large Scale Visual Recognition Challenge} },
Year={2015},
journal={International Journal of Computer Vision (IJCV)},
doi={10.1007/s11263-015-0816-y},
volume={115},
number={3},
pages={211-252}
}
[null,null,["最終更新日 2024-06-01 UTC。"],[],[],null,["# imagenet2012_real\n\n\u003cbr /\u003e\n\n| **Warning:** Manual download required. See instructions below.\n\n- **Description**:\n\nThis dataset contains ILSVRC-2012 (ImageNet) validation images augmented with a\nnew set of \"Re-Assessed\" (ReaL) labels from the \"Are we done with ImageNet\"\npaper, see \u003chttps://arxiv.org/abs/2006.07159\u003e These labels are collected using\nthe enhanced protocol, resulting in multi-label and more accurate annotations.\n\nImportant note: about 3500 examples contain no label, these should be\n[excluded from the averaging when computing the accuracy](https://github.com/google-research/reassessed-imagenet#numpy).\nOne possible way of doing this is with the following NumPy code: \n\n is_correct = [pred in real_labels[i] for i, pred in enumerate(predictions) if real_labels[i]]\n real_accuracy = np.mean(is_correct)\n\n- **Homepage** :\n \u003chttps://github.com/google-research/reassessed-imagenet\u003e\n\n- **Source code** :\n [`tfds.datasets.imagenet2012_real.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/imagenet2012_real/imagenet2012_real_dataset_builder.py)\n\n- **Versions**:\n\n - **`1.0.0`** (default): Initial release\n- **Download size** : `379.37 KiB`\n\n- **Dataset size** : `6.25 GiB`\n\n- **Manual download instructions** : This dataset requires you to\n download the source data manually into `download_config.manual_dir`\n (defaults to `~/tensorflow_datasets/downloads/manual/`): \n\n manual_dir should contain `ILSVRC2012_img_val.tar` file.\n You need to register on \u003chttp://www.image-net.org/download-images\u003e in order\n to get the link to download the dataset.\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'validation'` | 50,000 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'file_name': Text(shape=(), dtype=string),\n 'image': Image(shape=(None, None, 3), dtype=uint8),\n 'original_label': ClassLabel(shape=(), dtype=int64, num_classes=1000),\n 'real_label': Sequence(ClassLabel(shape=(), dtype=int64, num_classes=1000)),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|----------------|----------------------|-----------------|--------|-------------|\n| | FeaturesDict | | | |\n| file_name | Text | | string | |\n| image | Image | (None, None, 3) | uint8 | |\n| original_label | ClassLabel | | int64 | |\n| real_label | Sequence(ClassLabel) | (None,) | int64 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('image', 'real_label')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @article{beyer2020imagenet,\n title={Are we done with ImageNet?},\n author={Lucas Beyer and Olivier J. Henaff and Alexander Kolesnikov and Xiaohua Zhai and Aaron van den Oord},\n journal={arXiv preprint arXiv:2002.05709},\n year={2020}\n }\n @article{ILSVRC15,\n Author={Olga Russakovsky and Jia Deng and Hao Su and Jonathan Krause and Sanjeev Satheesh and Sean Ma and Zhiheng Huang and Andrej Karpathy and Aditya Khosla and Michael Bernstein and Alexander C. Berg and Li Fei-Fei},\n Title={ {ImageNet Large Scale Visual Recognition Challenge} },\n Year={2015},\n journal={International Journal of Computer Vision (IJCV)},\n doi={10.1007/s11263-015-0816-y},\n volume={115},\n number={3},\n pages={211-252}\n }"]]