[null,null,["最終更新日 2024-12-17 UTC。"],[],[],null,["# pneumonia_mnist\n\n\u003cbr /\u003e\n\n- **Description**:\n\nMedMNIST Pneumonia Dataset\n==========================\n\nThe PneumoniaMNIST is based on a prior dataset of 5,856 pediatric chest X-Ray\nimages. The task is binary-class classification of pneumonia against normal. The\nsource training set is split with a ratio of 9:1 into training and validation\nset, and use its source validation set as the test set. The source images are\ngray-scale, and their sizes are (384--2,916) × (127--2,713). The images are\ncenter-cropped with a window size of length of the short edge and resized into 1\n× 28 × 28.\n\n- **Homepage** : \u003chttps://medmnist.com//\u003e\n\n- **Source code** :\n [`tfds.datasets.pneumonia_mnist.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/pneumonia_mnist/pneumonia_mnist_dataset_builder.py)\n\n- **Versions**:\n\n - **`1.0.0`** (default): Initial release.\n- **Download size** : `Unknown size`\n\n- **Dataset size** : `3.66 MiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Yes\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'test'` | 624 |\n| `'train'` | 4,708 |\n| `'val'` | 524 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'image': Image(shape=(28, 28, 1), dtype=uint8),\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=2),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|---------|--------------|-------------|-------|-------------|\n| | FeaturesDict | | | |\n| image | Image | (28, 28, 1) | uint8 | |\n| label | ClassLabel | | int64 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('image', 'label')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @article{yang2023medmnist,\n title={Medmnist v2-a large-scale lightweight benchmark for 2d and 3d biomedical image classification},\n author={Yang, Jiancheng and Shi, Rui and Wei, Donglai and Liu, Zequan and Zhao, Lin and Ke, Bilian and Pfister, Hanspeter and Ni, Bingbing},\n journal={Scientific Data},\n volume={10},\n number={1},\n pages={41},\n year={2023},\n publisher={Nature Publishing Group UK London}\n }"]]