reddit
コレクションでコンテンツを整理
必要に応じて、コンテンツの保存と分類を行います。
このコーパスには、Reddit データセットからの前処理済みの投稿が含まれています。データセットは 3,848,330 件の投稿で構成され、平均の長さはコンテンツが 270 語、要約が 28 語です。
機能には文字列が含まれます: author、body、normalizedBody、content、summary、subreddit、subreddit_id。コンテンツはドキュメントとして使用され、要約は要約として使用されます。
FeaturesDict({
'author': string,
'body': string,
'content': string,
'id': string,
'normalizedBody': string,
'subreddit': string,
'subreddit_id': string,
'summary': string,
})
特徴 | クラス | 形 | Dtype | 説明 |
---|
| 特徴辞書 | | | |
著者 | テンソル | | ストリング | |
体 | テンソル | | ストリング | |
コンテンツ | テンソル | | ストリング | |
ID | テンソル | | ストリング | |
正規化されたボディ | テンソル | | ストリング | |
サブレディット | テンソル | | ストリング | |
subreddit_id | テンソル | | ストリング | |
まとめ | テンソル | | ストリング | |
@inproceedings{volske-etal-2017-tl,
title = "{TL};{DR}: Mining {R}eddit to Learn Automatic Summarization",
author = {V{\"o}lske, Michael and
Potthast, Martin and
Syed, Shahbaz and
Stein, Benno},
booktitle = "Proceedings of the Workshop on New Frontiers in Summarization",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W17-4508",
doi = "10.18653/v1/W17-4508",
pages = "59--63",
abstract = "Recent advances in automatic text summarization have used deep neural networks to generate high-quality abstractive summaries, but the performance of these models strongly depends on large amounts of suitable training data. We propose a new method for mining social media for author-provided summaries, taking advantage of the common practice of appending a {``}TL;DR{''} to long posts. A case study using a large Reddit crawl yields the Webis-TLDR-17 dataset, complementing existing corpora primarily from the news genre. Our technique is likely applicable to other social media sites and general web crawls.",
}
特に記載のない限り、このページのコンテンツはクリエイティブ・コモンズの表示 4.0 ライセンスにより使用許諾されます。コードサンプルは Apache 2.0 ライセンスにより使用許諾されます。詳しくは、Google Developers サイトのポリシーをご覧ください。Java は Oracle および関連会社の登録商標です。
最終更新日 2022-12-20 UTC。
[null,null,["最終更新日 2022-12-20 UTC。"],[],[],null,["# reddit\n\n\u003cbr /\u003e\n\n- **Description**:\n\nThis corpus contains preprocessed posts from the Reddit dataset. The dataset\nconsists of 3,848,330 posts with an average length of 270 words for content, and\n28 words for the summary.\n\nFeatures includes strings: author, body, normalizedBody, content, summary,\nsubreddit, subreddit_id. Content is used as document and summary is used as\nsummary.\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/reddit)\n\n- **Homepage** :\n \u003chttps://github.com/webis-de/webis-tldr-17-corpus\u003e\n\n- **Source code** :\n [`tfds.datasets.reddit.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/reddit/reddit_dataset_builder.py)\n\n- **Versions**:\n\n - **`1.0.0`** (default): No release notes.\n- **Download size** : `2.93 GiB`\n\n- **Dataset size** : `18.09 GiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|-----------|\n| `'train'` | 3,848,330 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'author': string,\n 'body': string,\n 'content': string,\n 'id': string,\n 'normalizedBody': string,\n 'subreddit': string,\n 'subreddit_id': string,\n 'summary': string,\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|----------------|--------------|-------|--------|-------------|\n| | FeaturesDict | | | |\n| author | Tensor | | string | |\n| body | Tensor | | string | |\n| content | Tensor | | string | |\n| id | Tensor | | string | |\n| normalizedBody | Tensor | | string | |\n| subreddit | Tensor | | string | |\n| subreddit_id | Tensor | | string | |\n| summary | Tensor | | string | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('content', 'summary')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @inproceedings{volske-etal-2017-tl,\n title = \"{TL};{DR}: Mining {R}eddit to Learn Automatic Summarization\",\n author = {V{\\\"o}lske, Michael and\n Potthast, Martin and\n Syed, Shahbaz and\n Stein, Benno},\n booktitle = \"Proceedings of the Workshop on New Frontiers in Summarization\",\n month = sep,\n year = \"2017\",\n address = \"Copenhagen, Denmark\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W17-4508\",\n doi = \"10.18653/v1/W17-4508\",\n pages = \"59--63\",\n abstract = \"Recent advances in automatic text summarization have used deep neural networks to generate high-quality abstractive summaries, but the performance of these models strongly depends on large amounts of suitable training data. We propose a new method for mining social media for author-provided summaries, taking advantage of the common practice of appending a {``}TL;DR{''} to long posts. A case study using a large Reddit crawl yields the Webis-TLDR-17 dataset, complementing existing corpora primarily from the news genre. Our technique is likely applicable to other social media sites and general web crawls.\",\n }"]]