@article{zhu2019did,
title={Who did They Respond to? Conversation Structure Modeling using Masked Hierarchical Transformer},
author={Zhu, Henghui and Nan, Feng and Wang, Zhiguo and Nallapati, Ramesh and Xiang, Bing},
journal={arXiv preprint arXiv:1911.10666},
year={2019}
}
[null,null,["最終更新日 2022-12-20 UTC。"],[],[],null,["# reddit_disentanglement\n\n\u003cbr /\u003e\n\n| **Warning:** Manual download required. See instructions below.\n\n- **Description**:\n\nThis dataset contains \\~3M messages from reddit. Every message is labeled with\nmetadata. The task is to predict the id of its parent message in the\ncorresponding thread. Each record contains a list of messages from one thread.\nDuplicated and broken records are removed from the dataset.\n\nFeatures are:\n\n- id - message id\n- text - message text\n- author - message author\n- created_utc - message UTC timestamp\n- link_id - id of the post that the comment relates to\n\nTarget:\n\n- parent_id - id of the parent message in the current thread\n\n- **Homepage** :\n \u003chttps://github.com/henghuiz/MaskedHierarchicalTransformer\u003e\n\n- **Source code** :\n [`tfds.datasets.reddit_disentanglement.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/reddit_disentanglement/reddit_disentanglement_dataset_builder.py)\n\n- **Versions**:\n\n - **`2.0.0`** (default): No release notes.\n- **Download size** : `Unknown size`\n\n- **Dataset size** : `Unknown size`\n\n- **Manual download instructions** : This dataset requires you to\n download the source data manually into `download_config.manual_dir`\n (defaults to `~/tensorflow_datasets/downloads/manual/`): \n\n Download \u003chttps://github.com/henghuiz/MaskedHierarchicalTransformer,\u003e decompress\n raw_data.zip and run generate_dataset.py with your reddit api credentials.\n Then put train.csv, val.csv and test.csv from the output directory into the\n manual folder.\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Unknown\n\n- **Splits**:\n\n| Split | Examples |\n|-------|----------|\n\n- **Feature structure**:\n\n FeaturesDict({\n 'thread': Sequence({\n 'author': Text(shape=(), dtype=string),\n 'created_utc': Text(shape=(), dtype=string),\n 'id': Text(shape=(), dtype=string),\n 'link_id': Text(shape=(), dtype=string),\n 'parent_id': Text(shape=(), dtype=string),\n 'text': Text(shape=(), dtype=string),\n }),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|--------------------|--------------|-------|--------|-------------|\n| | FeaturesDict | | | |\n| thread | Sequence | | | |\n| thread/author | Text | | string | |\n| thread/created_utc | Text | | string | |\n| thread/id | Text | | string | |\n| thread/link_id | Text | | string | |\n| thread/parent_id | Text | | string | |\n| thread/text | Text | | string | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n Missing.\n\n- **Citation**:\n\n @article{zhu2019did,\n title={Who did They Respond to? Conversation Structure Modeling using Masked Hierarchical Transformer},\n author={Zhu, Henghui and Nan, Feng and Wang, Zhiguo and Nallapati, Ramesh and Xiang, Bing},\n journal={arXiv preprint arXiv:1911.10666},\n year={2019}\n }"]]