@inproceedings{qi2017pointnet,
title={Pointnet: Deep learning on point sets
for3d classification and segmentation},
author={Qi, Charles R and Su, Hao and Mo, Kaichun and Guibas, Leonidas J},
booktitle={Proceedings of the IEEE conference on computer vision and pattern
recognition},
pages={652--660},
year={2017} }
This shorthand notation is used throughout this module:
B: Number of elements in a batch.
N: The number of points in the point set.
D: Number of dimensions (e.g. 2 for 2D, 3 for 3D).
C: The number of feature channels.
[null,null,["Last updated 2022-08-26 UTC."],[],[],null,["# Module: tfg.nn.layer.pointnet\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/graphics/blob/master/tensorflow_graphics/nn/layer/pointnet.py) |\n\nImplementation of the PointNet networks.\n\n@inproceedings{qi2017pointnet,\ntitle={Pointnet: Deep learning on point sets\nfor3d classification and segmentation},\nauthor={Qi, Charles R and Su, Hao and Mo, Kaichun and Guibas, Leonidas J},\nbooktitle={Proceedings of the IEEE conference on computer vision and pattern\nrecognition},\npages={652--660},\nyear={2017} }\n| **Note:** scheduling of batchnorm momentum currently not available in keras. However experimentally, using the batch norm from Keras resulted in better test accuracy (+1.5%) than the author's [custom batch norm\n| version](https://github.com/charlesq34/pointnet/blob/master/utils/tf_util.py) even when coupled with batchnorm momentum decay. Further, note the author's version is actually performing a \"global normalization\", as mentioned in the [tf.nn.moments documentation](https://www.tensorflow.org/api_docs/python/tf/nn/moments).\n\nThis shorthand notation is used throughout this module:\n`B`: Number of elements in a batch.\n`N`: The number of points in the point set.\n`D`: Number of dimensions (e.g. 2 for 2D, 3 for 3D).\n`C`: The number of feature channels.\n\nClasses\n-------\n\n[`class ClassificationHead`](../../../tfg/nn/layer/pointnet/ClassificationHead): The PointNet classification head.\n\n[`class PointNetConv2Layer`](../../../tfg/nn/layer/pointnet/PointNetConv2Layer): The 2D convolution layer used by the feature encoder in PointNet.\n\n[`class PointNetDenseLayer`](../../../tfg/nn/layer/pointnet/PointNetDenseLayer): The fully connected layer used by the classification head in pointnet.\n\n[`class PointNetVanillaClassifier`](../../../tfg/nn/layer/pointnet/PointNetVanillaClassifier): The PointNet 'Vanilla' classifier (i.e. without spatial transformer).\n\n[`class VanillaEncoder`](../../../tfg/nn/layer/pointnet/VanillaEncoder): The Vanilla PointNet feature encoder."]]