adversarial_qa

参考:

adversarialQA

使用以下命令在 TFDS 中加载此数据集:

ds = tfds.load('huggingface:adversarial_qa/adversarialQA')
  • 说明
AdversarialQA is a Reading Comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles using an adversarial model-in-the-loop.
We use three different models; BiDAF (Seo et al., 2016), BERT-Large (Devlin et al., 2018), and RoBERTa-Large (Liu et al., 2019) in the annotation loop and construct three datasets; D(BiDAF), D(BERT), and D(RoBERTa), each with 10,000 training examples, 1,000 validation, and 1,000 test examples.
The adversarial human annotation paradigm ensures that these datasets consist of questions that current state-of-the-art models (at least the ones used as adversaries in the annotation loop) find challenging.
  • 许可证:无已知许可证
  • 版本:1.0.0
  • 拆分
拆分 样本
'test' 3000
'train' 30000
'validation' 3000
  • 特征
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "title": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "context": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answers": {
        "feature": {
            "text": {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            },
            "answer_start": {
                "dtype": "int32",
                "id": null,
                "_type": "Value"
            }
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "metadata": {
        "split": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "model_in_the_loop": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    }
}

dbidaf

使用以下命令在 TFDS 中加载此数据集:

ds = tfds.load('huggingface:adversarial_qa/dbidaf')
  • 说明
AdversarialQA is a Reading Comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles using an adversarial model-in-the-loop.
We use three different models; BiDAF (Seo et al., 2016), BERT-Large (Devlin et al., 2018), and RoBERTa-Large (Liu et al., 2019) in the annotation loop and construct three datasets; D(BiDAF), D(BERT), and D(RoBERTa), each with 10,000 training examples, 1,000 validation, and 1,000 test examples.
The adversarial human annotation paradigm ensures that these datasets consist of questions that current state-of-the-art models (at least the ones used as adversaries in the annotation loop) find challenging.
  • 许可证:无已知许可证
  • 版本:1.0.0
  • 拆分
拆分 样本
'test' 1000
'train' 10000
'validation' 1000
  • 特征
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "title": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "context": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answers": {
        "feature": {
            "text": {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            },
            "answer_start": {
                "dtype": "int32",
                "id": null,
                "_type": "Value"
            }
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "metadata": {
        "split": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "model_in_the_loop": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    }
}

dbert

使用以下命令在 TFDS 中加载此数据集:

ds = tfds.load('huggingface:adversarial_qa/dbert')
  • 说明
AdversarialQA is a Reading Comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles using an adversarial model-in-the-loop.
We use three different models; BiDAF (Seo et al., 2016), BERT-Large (Devlin et al., 2018), and RoBERTa-Large (Liu et al., 2019) in the annotation loop and construct three datasets; D(BiDAF), D(BERT), and D(RoBERTa), each with 10,000 training examples, 1,000 validation, and 1,000 test examples.
The adversarial human annotation paradigm ensures that these datasets consist of questions that current state-of-the-art models (at least the ones used as adversaries in the annotation loop) find challenging.
  • 许可证:无已知许可证
  • 版本:1.0.0
  • 拆分
拆分 样本
'test' 1000
'train' 10000
'validation' 1000
  • 特征
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "title": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "context": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answers": {
        "feature": {
            "text": {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            },
            "answer_start": {
                "dtype": "int32",
                "id": null,
                "_type": "Value"
            }
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "metadata": {
        "split": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "model_in_the_loop": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    }
}

droberta

使用以下命令在 TFDS 中加载此数据集:

ds = tfds.load('huggingface:adversarial_qa/droberta')
  • 说明
AdversarialQA is a Reading Comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles using an adversarial model-in-the-loop.
We use three different models; BiDAF (Seo et al., 2016), BERT-Large (Devlin et al., 2018), and RoBERTa-Large (Liu et al., 2019) in the annotation loop and construct three datasets; D(BiDAF), D(BERT), and D(RoBERTa), each with 10,000 training examples, 1,000 validation, and 1,000 test examples.
The adversarial human annotation paradigm ensures that these datasets consist of questions that current state-of-the-art models (at least the ones used as adversaries in the annotation loop) find challenging.
  • 许可证:无已知许可证
  • 版本:1.0.0
  • 拆分
拆分 样本
'test' 1000
'train' 10000
'validation' 1000
  • 特征
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "title": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "context": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answers": {
        "feature": {
            "text": {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            },
            "answer_start": {
                "dtype": "int32",
                "id": null,
                "_type": "Value"
            }
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "metadata": {
        "split": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "model_in_the_loop": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        }
    }
}