aqua_rat

参考:

raw

使用以下命令在 TFDS 中加载此数据集:

ds = tfds.load('huggingface:aqua_rat/raw')
  • 说明
A large-scale dataset consisting of approximately 100,000 algebraic word problems.
The solution to each question is explained step-by-step using natural language.
This data is used to train a program generation model that learns to generate the explanation,
while generating the program that solves the question.
  • 许可:Copyright 2017 Google Inc.

根据 Apache 许可 2.0(“许可”)获得许可;除非遵循许可要求,否则您不得使用此文件。您可在以下网址获得许可的副本:

http://www.apache.org/licenses/LICENSE-2.0

除非适用法律要求或以书面形式同意,否则在本许可下分发的软件将在“按原样”的基础上分发,不存在任何明示或暗示的任何类型的保证或条件。有关在本许可下管理权限和限制的特定语言,请参阅本许可。

  • 版本:0.0.0
  • 拆分
拆分 样本
'test' 254
'train' 97467
'validation' 254
  • 特征
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "options": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "rationale": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "correct": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

tokenized

使用以下命令在 TFDS 中加载此数据集:

ds = tfds.load('huggingface:aqua_rat/tokenized')
  • 说明
A large-scale dataset consisting of approximately 100,000 algebraic word problems.
The solution to each question is explained step-by-step using natural language.
This data is used to train a program generation model that learns to generate the explanation,
while generating the program that solves the question.
  • 许可:Copyright 2017 Google Inc.

根据 Apache 许可 2.0(“许可”)获得许可;除非遵循许可要求,否则您不得使用此文件。您可在以下网址获得许可的副本:

http://www.apache.org/licenses/LICENSE-2.0

除非适用法律要求或以书面形式同意,否则在本许可下分发的软件将在“按原样”的基础上分发,不存在任何明示或暗示的任何类型的保证或条件。有关在本许可下管理权限和限制的特定语言,请参阅本许可。

  • 版本:0.0.0
  • 拆分
拆分 样本
'test' 254
'train' 97467
'validation' 254
  • 特征
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "options": {
        "feature": {
            "dtype": "string",
            "id": null,
            "_type": "Value"
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    },
    "rationale": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "correct": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}