aloha_mobile

  • Description :

Ensemble de données réel. Imiter des tâches de manipulation mobiles bimanuelles et nécessitant un contrôle de tout le corps. 50 démonstrations pour chaque tâche.

Diviser Exemples
'train' 276
  • Structure des fonctionnalités :
FeaturesDict({
    'episode_metadata': FeaturesDict({
        'file_path': string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(16,), dtype=float32),
        'discount': Scalar(shape=(), dtype=float32),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'language_instruction': string,
        'observation': FeaturesDict({
            'cam_high': Image(shape=(480, 640, 3), dtype=uint8),
            'cam_left_wrist': Image(shape=(480, 640, 3), dtype=uint8),
            'cam_right_wrist': Image(shape=(480, 640, 3), dtype=uint8),
            'state': Tensor(shape=(14,), dtype=float32),
        }),
        'reward': Scalar(shape=(), dtype=float32),
    }),
})
  • Documentation des fonctionnalités :
Fonctionnalité Classe Forme Type D Description
FonctionnalitésDict
épisode_métadonnées FonctionnalitésDict
épisode_metadata/file_path Tenseur chaîne
pas Base de données
étapes/actions Tenseur (16,) flotteur32
étapes/remise Scalaire flotteur32
étapes/is_first Tenseur bouffon
étapes/est_dernier Tenseur bouffon
étapes/is_terminal Tenseur bouffon
étapes/instruction_langue Tenseur chaîne
étapes/observation FonctionnalitésDict
étapes/observation/cam_high Image (480, 640, 3) uint8
pas/observation/cam_left_wrist Image (480, 640, 3) uint8
étapes/observation/cam_right_wrist Image (480, 640, 3) uint8
étapes/observation/état Tenseur (14,) flotteur32
étapes/récompense Scalaire flotteur32
  • Citation :
@inproceedings{fu2024mobile,author = {Fu, Zipeng and Zhao, Tony Z. and Finn, Chelsea},title = {Mobile ALOHA: Learning Bimanual Mobile Manipulation with Low-Cost Whole-Body Teleoperation},booktitle = {arXiv},year = {2024},}