Aprenda o que há de mais recente em aprendizado de máquina, IA generativa e muito mais no WiML Symposium 2023
Registre-se
gtzan
Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
O conjunto de dados consiste em 1000 faixas de áudio com duração de 30 segundos cada. Ele contém 10 gêneros, cada um representado por 100 faixas. As faixas são todos arquivos de áudio mono de 16 bits de 22050 Hz no formato .wav.
Os gêneros são:
Dividir | Exemplos |
---|
'train' | 1.000 |
FeaturesDict({
'audio': Audio(shape=(None,), dtype=int64),
'audio/filename': Text(shape=(), dtype=string),
'label': ClassLabel(shape=(), dtype=int64, num_classes=10),
})
Característica | Classe | Forma | Tipo D | Descrição |
---|
| RecursosDict | | | |
áudio | áudio | (Nenhum,) | int64 | |
áudio/nome do arquivo | Texto | | corda | |
etiqueta | ClassLabel | | int64 | |
@misc{tzanetakis_essl_cook_2001,
author = "Tzanetakis, George and Essl, Georg and Cook, Perry",
title = "Automatic Musical Genre Classification Of Audio Signals",
url = "http://ismir2001.ismir.net/pdf/tzanetakis.pdf",
publisher = "The International Society for Music Information Retrieval",
year = "2001"
}
Exceto em caso de indicação contrária, o conteúdo desta página é licenciado de acordo com a Licença de atribuição 4.0 do Creative Commons, e as amostras de código são licenciadas de acordo com a Licença Apache 2.0. Para mais detalhes, consulte as políticas do site do Google Developers. Java é uma marca registrada da Oracle e/ou afiliadas.
Última atualização 2022-12-06 UTC.
[null,null,["Última atualização 2022-12-06 UTC."],[],[],null,["# gtzan\n\n\u003cbr /\u003e\n\n- **Description**:\n\nThe dataset consists of 1000 audio tracks each 30 seconds long. It contains 10\ngenres, each represented by 100 tracks. The tracks are all 22050Hz Mono 16-bit\naudio files in .wav format.\n\nThe genres are:\n\n- blues\n- classical\n- country\n- disco\n- hiphop\n- jazz\n- metal\n- pop\n- reggae\n- rock\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/gtzan)\n\n- **Homepage** :\n \u003chttp://marsyas.info/index.html\u003e\n\n- **Source code** :\n [`tfds.audio.gtzan.GTZAN`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/audio/gtzan/gtzan.py)\n\n- **Versions**:\n\n - **`1.0.0`** (default): No release notes.\n- **Download size** : `1.14 GiB`\n\n- **Dataset size** : `3.71 GiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'train'` | 1,000 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'audio': Audio(shape=(None,), dtype=int64),\n 'audio/filename': Text(shape=(), dtype=string),\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=10),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|----------------|--------------|---------|--------|-------------|\n| | FeaturesDict | | | |\n| audio | Audio | (None,) | int64 | |\n| audio/filename | Text | | string | |\n| label | ClassLabel | | int64 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('audio', 'label')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @misc{tzanetakis_essl_cook_2001,\n author = \"Tzanetakis, George and Essl, Georg and Cook, Perry\",\n title = \"Automatic Musical Genre Classification Of Audio Signals\",\n url = \"http://ismir2001.ismir.net/pdf/tzanetakis.pdf\",\n publisher = \"The International Society for Music Information Retrieval\",\n year = \"2001\"\n }"]]