imagenet_v2
Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
ImageNet-v2 est un ensemble de tests ImageNet (10 par classe) collecté en suivant de près le protocole d'étiquetage d'origine. Chaque image a été étiquetée par au moins 10 travailleurs de MTurk, voire plus, et selon la stratégie utilisée pour sélectionner les images à inclure parmi les 10 choisies pour la classe donnée, il existe trois versions différentes de l'ensemble de données. Veuillez vous référer à la section quatre du document pour plus de détails sur la façon dont les différentes variantes ont été compilées.
L'espace des étiquettes est le même que celui d'ImageNet2012. Chaque exemple est représenté sous forme de dictionnaire avec les clés suivantes :
- 'image' : L'image, un (H, W, 3)-tenseur.
- « étiquette » : un entier compris dans la plage [0, 1 000).
'file_name' : une chaîne unique identifiant l'exemple dans l'ensemble de données.
Page d'accueil : https://github.com/modestyachts/ImageNetV2
Code source : tfds.datasets.imagenet_v2.Builder
Versions :
-
1.0.0
: Version initiale. -
2.0.0
: Fichiers mis à jour. -
3.0.0
(par défaut) : Correction du nom de fichier, du chemin absolu au chemin relatif au répertoire de données, c'est-à-dire : "class_id/filename.jpg". -
3.1.0
: Nouvelles URL pour les ressources de Hugging Face.
Mise en cache automatique ( documentation ) : Non
Divisions :
Diviser | Exemples |
---|
'test' | 10 000 |
- Structure des fonctionnalités :
FeaturesDict({
'file_name': Text(shape=(), dtype=string),
'image': Image(shape=(None, None, 3), dtype=uint8),
'label': ClassLabel(shape=(), dtype=int64, num_classes=1000),
})
- Documentation des fonctionnalités :
Fonctionnalité | Classe | Forme | Type D | Description |
---|
| FonctionnalitésDict | | | |
nom de fichier | Texte | | chaîne | |
image | Image | (Aucun, Aucun, 3) | uint8 | |
étiquette | Étiquette de classe | | int64 | |
@inproceedings{recht2019imagenet,
title={Do ImageNet Classifiers Generalize to ImageNet?},
author={Recht, Benjamin and Roelofs, Rebecca and Schmidt, Ludwig and Shankar, Vaishaal},
booktitle={International Conference on Machine Learning},
pages={5389--5400},
year={2019}
}
imagenet_v2/matched-fréquence (configuration par défaut)
Taille du téléchargement : 1.18 GiB
Taille du jeu de données : 1.16 GiB
Figure ( tfds.show_examples ) :

imagenet_v2/seuil-0.7
Taille du téléchargement : 1.16 GiB
Taille du jeu de données : 1.15 GiB
Figure ( tfds.show_examples ) :

imagenet_v2/topimages
Taille du téléchargement : 1.16 GiB
Taille de l'ensemble de données : 1.14 GiB
Figure ( tfds.show_examples ) :

Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2024/06/01 (UTC).
[null,null,["Dernière mise à jour le 2024/06/01 (UTC)."],[],[],null,["# imagenet_v2\n\n\u003cbr /\u003e\n\n- **Description**:\n\nImageNet-v2 is an ImageNet test set (10 per class) collected by closely\nfollowing the original labelling protocol. Each image has been labelled by at\nleast 10 MTurk workers, possibly more, and depending on the strategy used to\nselect which images to include among the 10 chosen for the given class there are\nthree different versions of the dataset. Please refer to section four of the\npaper for more details on how the different variants were compiled.\n\nThe label space is the same as that of ImageNet2012. Each example is represented\nas a dictionary with the following keys:\n\n- 'image': The image, a (H, W, 3)-tensor.\n- 'label': An integer in the range \\[0, 1000).\n- 'file_name': A unique sting identifying the example within the dataset.\n\n- **Homepage** :\n \u003chttps://github.com/modestyachts/ImageNetV2\u003e\n\n- **Source code** :\n [`tfds.datasets.imagenet_v2.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/imagenet_v2/imagenet_v2_dataset_builder.py)\n\n- **Versions**:\n\n - `1.0.0`: Initial version.\n - `2.0.0`: Files updated.\n - **`3.0.0`** (default): Fix file_name, from absolute path to path relative to data directory, ie: \"class_id/filename.jpg\".\n - `3.1.0`: New URLs for resources from Hugging Face.\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|----------|----------|\n| `'test'` | 10,000 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'file_name': Text(shape=(), dtype=string),\n 'image': Image(shape=(None, None, 3), dtype=uint8),\n 'label': ClassLabel(shape=(), dtype=int64, num_classes=1000),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|-----------|--------------|-----------------|--------|-------------|\n| | FeaturesDict | | | |\n| file_name | Text | | string | |\n| image | Image | (None, None, 3) | uint8 | |\n| label | ClassLabel | | int64 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('image', 'label')`\n\n- **Citation**:\n\n @inproceedings{recht2019imagenet,\n title={Do ImageNet Classifiers Generalize to ImageNet?},\n author={Recht, Benjamin and Roelofs, Rebecca and Schmidt, Ludwig and Shankar, Vaishaal},\n booktitle={International Conference on Machine Learning},\n pages={5389--5400},\n year={2019}\n }\n\nimagenet_v2/matched-frequency (default config)\n----------------------------------------------\n\n- **Download size** : `1.18 GiB`\n\n- **Dataset size** : `1.16 GiB`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nimagenet_v2/threshold-0.7\n-------------------------\n\n- **Download size** : `1.16 GiB`\n\n- **Dataset size** : `1.15 GiB`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nimagenet_v2/topimages\n---------------------\n\n- **Download size** : `1.16 GiB`\n\n- **Dataset size** : `1.14 GiB`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples..."]]