protein_net
Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
ProteinNet est un ensemble de données standardisé pour l'apprentissage automatique de la structure des protéines. Il fournit des séquences de protéines, des structures (secondaires et tertiaires), des alignements de séquences multiples (MSA), des matrices de notation spécifiques à la position (PSSM) et des fractionnements de formation/validation/test standardisés. ProteinNet s'appuie sur les évaluations biennales du CASP, qui effectuent des prédictions à l'aveugle de structures protéiques récemment résolues mais non disponibles publiquement, pour fournir des ensembles de tests qui repoussent les frontières de la méthodologie informatique. Il est organisé en une série d'ensembles de données, couvrant les CASP 7 à 12 (couvrant une période de dix ans), pour fournir une gamme de tailles d'ensembles de données qui permettent l'évaluation de nouvelles méthodes dans des régimes relativement pauvres en données et riches en données.
FeaturesDict({
'evolutionary': Tensor(shape=(None, 21), dtype=float32),
'id': Text(shape=(), dtype=string),
'length': int32,
'mask': Tensor(shape=(None,), dtype=bool),
'primary': Sequence(ClassLabel(shape=(), dtype=int64, num_classes=20)),
'tertiary': Tensor(shape=(None, 3), dtype=float32),
})
- Documentation des fonctionnalités :
Caractéristique | Classer | Forme | Dtype | La description |
---|
| FonctionnalitésDict | | | |
évolutionniste | Tenseur | (Aucun, 21) | float32 | |
identifiant | Texte | | chaîne de caractères | |
longueur | Tenseur | | int32 | |
masque | Tenseur | (Aucun,) | bourdonner | |
primaire | Séquence(ClassLabel) | (Aucun,) | int64 | |
tertiaire | Tenseur | (Aucun, 3) | float32 | |
@article{ProteinNet19,
title = { {ProteinNet}: a standardized data set for machine learning of protein structure},
author = {AlQuraishi, Mohammed},
journal = {BMC bioinformatics},
volume = {20},
number = {1},
pages = {1--10},
year = {2019},
publisher = {BioMed Central}
}
protein_net/casp7 (configuration par défaut)
Diviser | Exemples |
---|
'test' | 93 |
'train_100' | 34 557 |
'train_30' | 10 333 |
'train_50' | 13 024 |
'train_70' | 15 207 |
'train_90' | 17 611 |
'train_95' | 17 938 |
'validation' | 224 |
protein_net/casp8
Diviser | Exemples |
---|
'test' | 120 |
'train_100' | 48 087 |
'train_30' | 13 881 |
'train_50' | 17 970 |
'train_70' | 21 191 |
'train_90' | 24 556 |
'train_95' | 25 035 |
'validation' | 224 |
protein_net/casp9
Diviser | Exemples |
---|
'test' | 116 |
'train_100' | 60 350 |
'train_30' | 16 973 |
'train_50' | 22 172 |
'train_70' | 26 263 |
'train_90' | 30 513 |
'train_95' | 31 128 |
'validation' | 224 |
protein_net/casp10
Diviser | Exemples |
---|
'test' | 95 |
'train_100' | 73 116 |
'train_30' | 19 495 |
'train_50' | 25 897 |
'train_70' | 31 001 |
'train_90' | 36 258 |
'train_95' | 37 033 |
'validation' | 224 |
protein_net/casp11
Diviser | Exemples |
---|
'test' | 81 |
'train_100' | 87 573 |
'train_30' | 22 344 |
'train_50' | 29 936 |
'train_70' | 36 005 |
'train_90' | 42 507 |
'train_95' | 43 544 |
'validation' | 224 |
protein_net/casp12
Diviser | Exemples |
---|
'test' | 40 |
'train_100' | 104 059 |
'train_30' | 25 299 |
'train_50' | 34 039 |
'train_70' | 41 522 |
'train_90' | 49 600 |
'train_95' | 50 914 |
'validation' | 224 |
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2022/12/16 (UTC).
[null,null,["Dernière mise à jour le 2022/12/16 (UTC)."],[],[],null,["# protein_net\n\n\u003cbr /\u003e\n\n- **Description**:\n\nProteinNet is a standardized data set for machine learning of protein structure.\nIt provides protein sequences, structures (secondary and tertiary), multiple\nsequence alignments (MSAs), position-specific scoring matrices (PSSMs), and\nstandardized training / validation / test splits. ProteinNet builds on the\nbiennial CASP assessments, which carry out blind predictions of recently solved\nbut publicly unavailable protein structures, to provide test sets that push the\nfrontiers of computational methodology. It is organized as a series of data\nsets, spanning CASP 7 through 12 (covering a ten-year period), to provide a\nrange of data set sizes that enable assessment of new methods in relatively data\npoor and data rich regimes.\n\n- **Homepage** :\n \u003chttps://github.com/aqlaboratory/proteinnet\u003e\n\n- **Source code** :\n [`tfds.datasets.protein_net.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/protein_net/protein_net_dataset_builder.py)\n\n- **Versions**:\n\n - **`1.0.0`** (default): Initial release.\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Feature structure**:\n\n FeaturesDict({\n 'evolutionary': Tensor(shape=(None, 21), dtype=float32),\n 'id': Text(shape=(), dtype=string),\n 'length': int32,\n 'mask': Tensor(shape=(None,), dtype=bool),\n 'primary': Sequence(ClassLabel(shape=(), dtype=int64, num_classes=20)),\n 'tertiary': Tensor(shape=(None, 3), dtype=float32),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|--------------|----------------------|------------|---------|-------------|\n| | FeaturesDict | | | |\n| evolutionary | Tensor | (None, 21) | float32 | |\n| id | Text | | string | |\n| length | Tensor | | int32 | |\n| mask | Tensor | (None,) | bool | |\n| primary | Sequence(ClassLabel) | (None,) | int64 | |\n| tertiary | Tensor | (None, 3) | float32 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('primary', 'tertiary')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Citation**:\n\n @article{ProteinNet19,\n title = { {ProteinNet}: a standardized data set for machine learning of protein structure},\n author = {AlQuraishi, Mohammed},\n journal = {BMC bioinformatics},\n volume = {20},\n number = {1},\n pages = {1--10},\n year = {2019},\n publisher = {BioMed Central}\n }\n\nprotein_net/casp7 (default config)\n----------------------------------\n\n- **Download size** : `3.18 GiB`\n\n- **Dataset size** : `2.53 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 93 |\n| `'train_100'` | 34,557 |\n| `'train_30'` | 10,333 |\n| `'train_50'` | 13,024 |\n| `'train_70'` | 15,207 |\n| `'train_90'` | 17,611 |\n| `'train_95'` | 17,938 |\n| `'validation'` | 224 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nprotein_net/casp8\n-----------------\n\n- **Download size** : `4.96 GiB`\n\n- **Dataset size** : `3.55 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 120 |\n| `'train_100'` | 48,087 |\n| `'train_30'` | 13,881 |\n| `'train_50'` | 17,970 |\n| `'train_70'` | 21,191 |\n| `'train_90'` | 24,556 |\n| `'train_95'` | 25,035 |\n| `'validation'` | 224 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nprotein_net/casp9\n-----------------\n\n- **Download size** : `6.65 GiB`\n\n- **Dataset size** : `4.54 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 116 |\n| `'train_100'` | 60,350 |\n| `'train_30'` | 16,973 |\n| `'train_50'` | 22,172 |\n| `'train_70'` | 26,263 |\n| `'train_90'` | 30,513 |\n| `'train_95'` | 31,128 |\n| `'validation'` | 224 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nprotein_net/casp10\n------------------\n\n- **Download size** : `8.65 GiB`\n\n- **Dataset size** : `5.57 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 95 |\n| `'train_100'` | 73,116 |\n| `'train_30'` | 19,495 |\n| `'train_50'` | 25,897 |\n| `'train_70'` | 31,001 |\n| `'train_90'` | 36,258 |\n| `'train_95'` | 37,033 |\n| `'validation'` | 224 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nprotein_net/casp11\n------------------\n\n- **Download size** : `10.81 GiB`\n\n- **Dataset size** : `6.72 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 81 |\n| `'train_100'` | 87,573 |\n| `'train_30'` | 22,344 |\n| `'train_50'` | 29,936 |\n| `'train_70'` | 36,005 |\n| `'train_90'` | 42,507 |\n| `'train_95'` | 43,544 |\n| `'validation'` | 224 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nprotein_net/casp12\n------------------\n\n- **Download size** : `13.18 GiB`\n\n- **Dataset size** : `8.05 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 40 |\n| `'train_100'` | 104,059 |\n| `'train_30'` | 25,299 |\n| `'train_50'` | 34,039 |\n| `'train_70'` | 41,522 |\n| `'train_90'` | 49,600 |\n| `'train_95'` | 50,914 |\n| `'validation'` | 224 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples..."]]