Aprenda o que há de mais recente em aprendizado de máquina, IA generativa e muito mais no WiML Symposium 2023
Registre-se
protein_net
Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
ProteinNet é um conjunto de dados padronizado para aprendizado de máquina da estrutura da proteína. Ele fornece sequências de proteínas, estruturas (secundárias e terciárias), alinhamentos de sequência múltipla (MSAs), matrizes de pontuação específicas de posição (PSSMs) e divisões padronizadas de treinamento/validação/teste. O ProteinNet baseia-se nas avaliações CASP bienais, que realizam previsões cegas de estruturas de proteínas recentemente resolvidas, mas publicamente indisponíveis, para fornecer conjuntos de testes que ultrapassam as fronteiras da metodologia computacional. Ele é organizado como uma série de conjuntos de dados, abrangendo CASP 7 a 12 (cobrindo um período de dez anos), para fornecer uma variedade de tamanhos de conjuntos de dados que permitem a avaliação de novos métodos em regimes relativamente pobres e ricos em dados.
FeaturesDict({
'evolutionary': Tensor(shape=(None, 21), dtype=float32),
'id': Text(shape=(), dtype=string),
'length': int32,
'mask': Tensor(shape=(None,), dtype=bool),
'primary': Sequence(ClassLabel(shape=(), dtype=int64, num_classes=20)),
'tertiary': Tensor(shape=(None, 3), dtype=float32),
})
Característica | Classe | Forma | Tipo D | Descrição |
---|
| RecursosDict | | | |
evolutivo | tensor | (Nenhuma, 21) | float32 | |
Eu iria | Texto | | corda | |
comprimento | tensor | | int32 | |
mascarar | tensor | (Nenhum,) | bool | |
primário | Sequência(ClassLabel) | (Nenhum,) | int64 | |
terciário | tensor | (Nenhuma, 3) | float32 | |
@article{ProteinNet19,
title = { {ProteinNet}: a standardized data set for machine learning of protein structure},
author = {AlQuraishi, Mohammed},
journal = {BMC bioinformatics},
volume = {20},
number = {1},
pages = {1--10},
year = {2019},
publisher = {BioMed Central}
}
protein_net/casp7 (configuração padrão)
Dividir | Exemplos |
---|
'test' | 93 |
'train_100' | 34.557 |
'train_30' | 10.333 |
'train_50' | 13.024 |
'train_70' | 15.207 |
'train_90' | 17.611 |
'train_95' | 17.938 |
'validation' | 224 |
protein_net/casp8
Dividir | Exemplos |
---|
'test' | 120 |
'train_100' | 48.087 |
'train_30' | 13.881 |
'train_50' | 17.970 |
'train_70' | 21.191 |
'train_90' | 24.556 |
'train_95' | 25.035 |
'validation' | 224 |
protein_net/casp9
Dividir | Exemplos |
---|
'test' | 116 |
'train_100' | 60.350 |
'train_30' | 16.973 |
'train_50' | 22.172 |
'train_70' | 26.263 |
'train_90' | 30.513 |
'train_95' | 31.128 |
'validation' | 224 |
protein_net/casp10
Dividir | Exemplos |
---|
'test' | 95 |
'train_100' | 73.116 |
'train_30' | 19.495 |
'train_50' | 25.897 |
'train_70' | 31.001 |
'train_90' | 36.258 |
'train_95' | 37.033 |
'validation' | 224 |
protein_net/casp11
Dividir | Exemplos |
---|
'test' | 81 |
'train_100' | 87.573 |
'train_30' | 22.344 |
'train_50' | 29.936 |
'train_70' | 36.005 |
'train_90' | 42.507 |
'train_95' | 43.544 |
'validation' | 224 |
protein_net/casp12
Dividir | Exemplos |
---|
'test' | 40 |
'train_100' | 104.059 |
'train_30' | 25.299 |
'train_50' | 34.039 |
'train_70' | 41.522 |
'train_90' | 49.600 |
'train_95' | 50.914 |
'validation' | 224 |
Exceto em caso de indicação contrária, o conteúdo desta página é licenciado de acordo com a Licença de atribuição 4.0 do Creative Commons, e as amostras de código são licenciadas de acordo com a Licença Apache 2.0. Para mais detalhes, consulte as políticas do site do Google Developers. Java é uma marca registrada da Oracle e/ou afiliadas.
Última atualização 2022-12-16 UTC.
[null,null,["Última atualização 2022-12-16 UTC."],[],[],null,["# protein_net\n\n\u003cbr /\u003e\n\n- **Description**:\n\nProteinNet is a standardized data set for machine learning of protein structure.\nIt provides protein sequences, structures (secondary and tertiary), multiple\nsequence alignments (MSAs), position-specific scoring matrices (PSSMs), and\nstandardized training / validation / test splits. ProteinNet builds on the\nbiennial CASP assessments, which carry out blind predictions of recently solved\nbut publicly unavailable protein structures, to provide test sets that push the\nfrontiers of computational methodology. It is organized as a series of data\nsets, spanning CASP 7 through 12 (covering a ten-year period), to provide a\nrange of data set sizes that enable assessment of new methods in relatively data\npoor and data rich regimes.\n\n- **Homepage** :\n \u003chttps://github.com/aqlaboratory/proteinnet\u003e\n\n- **Source code** :\n [`tfds.datasets.protein_net.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/protein_net/protein_net_dataset_builder.py)\n\n- **Versions**:\n\n - **`1.0.0`** (default): Initial release.\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Feature structure**:\n\n FeaturesDict({\n 'evolutionary': Tensor(shape=(None, 21), dtype=float32),\n 'id': Text(shape=(), dtype=string),\n 'length': int32,\n 'mask': Tensor(shape=(None,), dtype=bool),\n 'primary': Sequence(ClassLabel(shape=(), dtype=int64, num_classes=20)),\n 'tertiary': Tensor(shape=(None, 3), dtype=float32),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|--------------|----------------------|------------|---------|-------------|\n| | FeaturesDict | | | |\n| evolutionary | Tensor | (None, 21) | float32 | |\n| id | Text | | string | |\n| length | Tensor | | int32 | |\n| mask | Tensor | (None,) | bool | |\n| primary | Sequence(ClassLabel) | (None,) | int64 | |\n| tertiary | Tensor | (None, 3) | float32 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('primary', 'tertiary')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Citation**:\n\n @article{ProteinNet19,\n title = { {ProteinNet}: a standardized data set for machine learning of protein structure},\n author = {AlQuraishi, Mohammed},\n journal = {BMC bioinformatics},\n volume = {20},\n number = {1},\n pages = {1--10},\n year = {2019},\n publisher = {BioMed Central}\n }\n\nprotein_net/casp7 (default config)\n----------------------------------\n\n- **Download size** : `3.18 GiB`\n\n- **Dataset size** : `2.53 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 93 |\n| `'train_100'` | 34,557 |\n| `'train_30'` | 10,333 |\n| `'train_50'` | 13,024 |\n| `'train_70'` | 15,207 |\n| `'train_90'` | 17,611 |\n| `'train_95'` | 17,938 |\n| `'validation'` | 224 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nprotein_net/casp8\n-----------------\n\n- **Download size** : `4.96 GiB`\n\n- **Dataset size** : `3.55 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 120 |\n| `'train_100'` | 48,087 |\n| `'train_30'` | 13,881 |\n| `'train_50'` | 17,970 |\n| `'train_70'` | 21,191 |\n| `'train_90'` | 24,556 |\n| `'train_95'` | 25,035 |\n| `'validation'` | 224 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nprotein_net/casp9\n-----------------\n\n- **Download size** : `6.65 GiB`\n\n- **Dataset size** : `4.54 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 116 |\n| `'train_100'` | 60,350 |\n| `'train_30'` | 16,973 |\n| `'train_50'` | 22,172 |\n| `'train_70'` | 26,263 |\n| `'train_90'` | 30,513 |\n| `'train_95'` | 31,128 |\n| `'validation'` | 224 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nprotein_net/casp10\n------------------\n\n- **Download size** : `8.65 GiB`\n\n- **Dataset size** : `5.57 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 95 |\n| `'train_100'` | 73,116 |\n| `'train_30'` | 19,495 |\n| `'train_50'` | 25,897 |\n| `'train_70'` | 31,001 |\n| `'train_90'` | 36,258 |\n| `'train_95'` | 37,033 |\n| `'validation'` | 224 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nprotein_net/casp11\n------------------\n\n- **Download size** : `10.81 GiB`\n\n- **Dataset size** : `6.72 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 81 |\n| `'train_100'` | 87,573 |\n| `'train_30'` | 22,344 |\n| `'train_50'` | 29,936 |\n| `'train_70'` | 36,005 |\n| `'train_90'` | 42,507 |\n| `'train_95'` | 43,544 |\n| `'validation'` | 224 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nprotein_net/casp12\n------------------\n\n- **Download size** : `13.18 GiB`\n\n- **Dataset size** : `8.05 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 40 |\n| `'train_100'` | 104,059 |\n| `'train_30'` | 25,299 |\n| `'train_50'` | 34,039 |\n| `'train_70'` | 41,522 |\n| `'train_90'` | 49,600 |\n| `'train_95'` | 50,914 |\n| `'validation'` | 224 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples..."]]