math_dataset

Références :

algèbre__linéaire_1d

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/algebra__linear_1d')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

algebra__linear_1d_composed

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/algebra__linear_1d_composed')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

algèbre__linéaire_2d

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/algebra__linear_2d')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

algebra__linear_2d_composed

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/algebra__linear_2d_composed')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

algèbre__polynomial_roots

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/algebra__polynomial_roots')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

algebra__polynomial_roots_composed

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/algebra__polynomial_roots_composed')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

algebra__sequence_next_term

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/algebra__sequence_next_term')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

algebra__sequence_nth_term

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/algebra__sequence_nth_term')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

arithmétique__add_or_sub

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/arithmetic__add_or_sub')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

arithmétique__add_or_sub_in_base

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/arithmetic__add_or_sub_in_base')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

arithmétique__add_sub_multiple

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/arithmetic__add_sub_multiple')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

arithmétique__div

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/arithmetic__div')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

arithmétique__mixte

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/arithmetic__mixed')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

arithmétique__mul

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/arithmetic__mul')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

arithmétique__mul_div_multiple

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/arithmetic__mul_div_multiple')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

arithmétique__nearest_integer_root

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/arithmetic__nearest_integer_root')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

arithmétique__simplify_surd

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/arithmetic__simplify_surd')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

calcul__différencier

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/calculus__differentiate')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

calcul__différentiate_composed

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/calculus__differentiate_composed')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

comparaison__la plus proche

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/comparison__closest')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

comparaison__closest_composed

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/comparison__closest_composed')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

comparaison__kth_biggest

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/comparison__kth_biggest')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

comparaison__kth_biggest_composed

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/comparison__kth_biggest_composed')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

comparaison__paire

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/comparison__pair')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

comparaison__pair_composed

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/comparison__pair_composed')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

comparaison__tri

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/comparison__sort')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

comparaison__sort_composed

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/comparison__sort_composed')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

mesure__conversion

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/measurement__conversion')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

mesure__heure

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/measurement__time')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

nombres__base_conversion

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/numbers__base_conversion')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

nombres__div_remainder

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/numbers__div_remainder')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

nombres__div_remainder_composed

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/numbers__div_remainder_composed')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

nombres__gcd

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/numbers__gcd')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

nombres__gcd_composed

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/numbers__gcd_composed')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

nombres__is_factor

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/numbers__is_factor')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

nombres__is_factor_composed

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/numbers__is_factor_composed')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

les nombres__is_prime

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/numbers__is_prime')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

nombres__is_prime_composed

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/numbers__is_prime_composed')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

nombres__lcm

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/numbers__lcm')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

nombres__lcm_composé

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/numbers__lcm_composed')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

nombres__list_prime_factors

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/numbers__list_prime_factors')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

nombres__list_prime_factors_composed

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/numbers__list_prime_factors_composed')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

nombres__place_value

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/numbers__place_value')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

nombres__place_value_composed

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/numbers__place_value_composed')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

nombres__numéro_rond

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/numbers__round_number')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

nombres__round_number_composed

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/numbers__round_number_composed')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

polynômes__ajouter

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/polynomials__add')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

polynômes__coefficient_named

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/polynomials__coefficient_named')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

polynômes__collect

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/polynomials__collect')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

polynômes__composer

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/polynomials__compose')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

polynômes__évaluer

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/polynomials__evaluate')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

polynômes__evaluate_composed

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/polynomials__evaluate_composed')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

polynômes__expand

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/polynomials__expand')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

polynômes__simplify_power

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/polynomials__simplify_power')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

probabilité__swr_p_level_set

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/probability__swr_p_level_set')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

probabilité__swr_p_sequence

Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :

ds = tfds.load('huggingface:math_dataset/probability__swr_p_sequence')
  • Description :
Mathematics database.

This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.

Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).

Example usage:
train_examples, val_examples = datasets.load_dataset(
    'math_dataset/arithmetic__mul',
    split=['train', 'test'],
    as_supervised=True)
  • Licence : Aucune licence connue
  • Version : 1.0.0
  • Divisions :
Diviser Exemples
'test' 10000
'train' 1999998
  • Caractéristiques :
{
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answer": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}