Références :
algèbre__linéaire_1d
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/algebra__linear_1d')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
algebra__linear_1d_composed
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/algebra__linear_1d_composed')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
algèbre__linéaire_2d
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/algebra__linear_2d')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
algebra__linear_2d_composed
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/algebra__linear_2d_composed')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
algèbre__polynomial_roots
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/algebra__polynomial_roots')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
algebra__polynomial_roots_composed
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/algebra__polynomial_roots_composed')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
algebra__sequence_next_term
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/algebra__sequence_next_term')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
algebra__sequence_nth_term
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/algebra__sequence_nth_term')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
arithmétique__add_or_sub
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/arithmetic__add_or_sub')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
arithmétique__add_or_sub_in_base
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/arithmetic__add_or_sub_in_base')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
arithmétique__add_sub_multiple
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/arithmetic__add_sub_multiple')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
arithmétique__div
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/arithmetic__div')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
arithmétique__mixte
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/arithmetic__mixed')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
arithmétique__mul
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/arithmetic__mul')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
arithmétique__mul_div_multiple
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/arithmetic__mul_div_multiple')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
arithmétique__nearest_integer_root
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/arithmetic__nearest_integer_root')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
arithmétique__simplify_surd
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/arithmetic__simplify_surd')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
calcul__différencier
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/calculus__differentiate')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
calcul__différentiate_composed
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/calculus__differentiate_composed')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
comparaison__la plus proche
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/comparison__closest')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
comparaison__closest_composed
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/comparison__closest_composed')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
comparaison__kth_biggest
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/comparison__kth_biggest')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
comparaison__kth_biggest_composed
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/comparison__kth_biggest_composed')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
comparaison__paire
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/comparison__pair')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
comparaison__pair_composed
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/comparison__pair_composed')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
comparaison__tri
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/comparison__sort')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
comparaison__sort_composed
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/comparison__sort_composed')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mesure__conversion
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/measurement__conversion')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mesure__heure
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/measurement__time')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
nombres__base_conversion
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/numbers__base_conversion')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
nombres__div_remainder
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/numbers__div_remainder')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
nombres__div_remainder_composed
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/numbers__div_remainder_composed')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
nombres__gcd
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/numbers__gcd')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
nombres__gcd_composed
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/numbers__gcd_composed')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
nombres__is_factor
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/numbers__is_factor')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
nombres__is_factor_composed
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/numbers__is_factor_composed')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
les nombres__is_prime
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/numbers__is_prime')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
nombres__is_prime_composed
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/numbers__is_prime_composed')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
nombres__lcm
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/numbers__lcm')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
nombres__lcm_composé
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/numbers__lcm_composed')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
nombres__list_prime_factors
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/numbers__list_prime_factors')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
nombres__list_prime_factors_composed
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/numbers__list_prime_factors_composed')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
nombres__place_value
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/numbers__place_value')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
nombres__place_value_composed
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/numbers__place_value_composed')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
nombres__numéro_rond
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/numbers__round_number')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
nombres__round_number_composed
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/numbers__round_number_composed')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
polynômes__ajouter
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/polynomials__add')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
polynômes__coefficient_named
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/polynomials__coefficient_named')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
polynômes__collect
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/polynomials__collect')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
polynômes__composer
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/polynomials__compose')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
polynômes__évaluer
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/polynomials__evaluate')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
polynômes__evaluate_composed
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/polynomials__evaluate_composed')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
polynômes__expand
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/polynomials__expand')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
polynômes__simplify_power
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/polynomials__simplify_power')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
probabilité__swr_p_level_set
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/probability__swr_p_level_set')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
probabilité__swr_p_sequence
Utilisez la commande suivante pour charger cet ensemble de données dans TFDS :
ds = tfds.load('huggingface:math_dataset/probability__swr_p_sequence')
- Description :
Mathematics database.
This dataset code generates mathematical question and answer pairs,
from a range of question types at roughly school-level difficulty.
This is designed to test the mathematical learning and algebraic
reasoning skills of learning models.
Original paper: Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton, Grefenstette, Hill, Kohli).
Example usage:
train_examples, val_examples = datasets.load_dataset(
'math_dataset/arithmetic__mul',
split=['train', 'test'],
as_supervised=True)
- Licence : Aucune licence connue
- Version : 1.0.0
- Divisions :
Diviser | Exemples |
---|---|
'test' | 10000 |
'train' | 1999998 |
- Caractéristiques :
{
"question": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"answer": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}