버클리_케이블_라우팅
컬렉션을 사용해 정리하기
내 환경설정을 기준으로 콘텐츠를 저장하고 분류하세요.
테이블 상단의 클램프에 케이블 라우팅
나뉘다 | 예 |
---|
'test' | 165 |
'train' | 1,482 |
FeaturesDict({
'steps': Dataset({
'action': FeaturesDict({
'rotation_delta': Tensor(shape=(3,), dtype=float32, description=Angular velocity about the z axis.),
'terminate_episode': float32,
'world_vector': Tensor(shape=(3,), dtype=float32, description=Velocity in XYZ.),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': FeaturesDict({
'image': Image(shape=(128, 128, 3), dtype=uint8),
'natural_language_embedding': Tensor(shape=(512,), dtype=float32),
'natural_language_instruction': string,
'robot_state': Tensor(shape=(7,), dtype=float32),
'top_image': Image(shape=(128, 128, 3), dtype=uint8),
'wrist225_image': Image(shape=(128, 128, 3), dtype=uint8),
'wrist45_image': Image(shape=(128, 128, 3), dtype=uint8),
}),
'reward': Scalar(shape=(), dtype=float32),
}),
})
특징 | 수업 | 모양 | Dtype | 설명 |
---|
| 특징Dict | | | |
단계 | 데이터세트 | | | |
단계/작업 | 특징Dict | | | |
단계/작업/회전_델타 | 텐서 | (3,) | float32 | z축에 대한 각속도입니다. |
단계/작업/종료_에피소드 | 텐서 | | float32 | |
단계/행동/세계_벡터 | 텐서 | (3,) | float32 | XYZ 단위의 속도. |
걸음수/is_first | 텐서 | | 부울 | |
걸음수/is_last | 텐서 | | 부울 | |
단계/is_terminal | 텐서 | | 부울 | |
단계/관찰 | 특징Dict | | | |
단계/관찰/이미지 | 영상 | (128, 128, 3) | uint8 | |
단계/관찰/natural_언어_임베딩 | 텐서 | (512,) | float32 | |
단계/관찰/natural_lang_instruction | 텐서 | | 끈 | |
단계/관찰/robot_state | 텐서 | (7,) | float32 | |
단계/관찰/top_image | 영상 | (128, 128, 3) | uint8 | |
걸음 수/관찰/wrist225_image | 영상 | (128, 128, 3) | uint8 | |
걸음 수/관찰/wrist45_image | 영상 | (128, 128, 3) | uint8 | |
걸음 수/보상 | 스칼라 | | float32 | |
@article{luo2023multistage,
author = {Jianlan Luo and Charles Xu and Xinyang Geng and Gilbert Feng and Kuan Fang and Liam Tan and Stefan Schaal and Sergey Levine},
title = {Multi-Stage Cable Routing through Hierarchical Imitation Learning},
journal = {arXiv pre-print},
year = {2023},
url = {https://arxiv.org/abs/2307.08927},
}
달리 명시되지 않는 한 이 페이지의 콘텐츠에는 Creative Commons Attribution 4.0 라이선스에 따라 라이선스가 부여되며, 코드 샘플에는 Apache 2.0 라이선스에 따라 라이선스가 부여됩니다. 자세한 내용은 Google Developers 사이트 정책을 참조하세요. 자바는 Oracle 및/또는 Oracle 계열사의 등록 상표입니다.
최종 업데이트: 2024-09-04(UTC)
[null,null,["최종 업데이트: 2024-09-04(UTC)"],[],[],null,["# berkeley_cable_routing\n\n\u003cbr /\u003e\n\n- **Description**:\n\nRouting cable into clamps on table top\n\n- **Homepage** :\n \u003chttps://sites.google.com/view/cablerouting/home\u003e\n\n- **Source code** :\n [`tfds.robotics.rtx.BerkeleyCableRouting`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/robotics/rtx/rtx.py)\n\n- **Versions**:\n\n - **`0.1.0`** (default): Initial release.\n- **Download size** : `Unknown size`\n\n- **Dataset size** : `4.67 GiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'test'` | 165 |\n| `'train'` | 1,482 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'steps': Dataset({\n 'action': FeaturesDict({\n 'rotation_delta': Tensor(shape=(3,), dtype=float32, description=Angular velocity about the z axis.),\n 'terminate_episode': float32,\n 'world_vector': Tensor(shape=(3,), dtype=float32, description=Velocity in XYZ.),\n }),\n 'is_first': bool,\n 'is_last': bool,\n 'is_terminal': bool,\n 'observation': FeaturesDict({\n 'image': Image(shape=(128, 128, 3), dtype=uint8),\n 'natural_language_embedding': Tensor(shape=(512,), dtype=float32),\n 'natural_language_instruction': string,\n 'robot_state': Tensor(shape=(7,), dtype=float32),\n 'top_image': Image(shape=(128, 128, 3), dtype=uint8),\n 'wrist225_image': Image(shape=(128, 128, 3), dtype=uint8),\n 'wrist45_image': Image(shape=(128, 128, 3), dtype=uint8),\n }),\n 'reward': Scalar(shape=(), dtype=float32),\n }),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|------------------------------------------------|--------------|---------------|---------|------------------------------------|\n| | FeaturesDict | | | |\n| steps | Dataset | | | |\n| steps/action | FeaturesDict | | | |\n| steps/action/rotation_delta | Tensor | (3,) | float32 | Angular velocity about the z axis. |\n| steps/action/terminate_episode | Tensor | | float32 | |\n| steps/action/world_vector | Tensor | (3,) | float32 | Velocity in XYZ. |\n| steps/is_first | Tensor | | bool | |\n| steps/is_last | Tensor | | bool | |\n| steps/is_terminal | Tensor | | bool | |\n| steps/observation | FeaturesDict | | | |\n| steps/observation/image | Image | (128, 128, 3) | uint8 | |\n| steps/observation/natural_language_embedding | Tensor | (512,) | float32 | |\n| steps/observation/natural_language_instruction | Tensor | | string | |\n| steps/observation/robot_state | Tensor | (7,) | float32 | |\n| steps/observation/top_image | Image | (128, 128, 3) | uint8 | |\n| steps/observation/wrist225_image | Image | (128, 128, 3) | uint8 | |\n| steps/observation/wrist45_image | Image | (128, 128, 3) | uint8 | |\n| steps/reward | Scalar | | float32 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @article{luo2023multistage,\n author = {Jianlan Luo and Charles Xu and Xinyang Geng and Gilbert Feng and Kuan Fang and Liam Tan and Stefan Schaal and Sergey Levine},\n title = {Multi-Stage Cable Routing through Hierarchical Imitation Learning},\n journal = {arXiv pre-print},\n year = {2023},\n url = {https://arxiv.org/abs/2307.08927},\n }"]]