berkeley_mvp_converted_externally_to_rlds
컬렉션을 사용해 정리하기
내 환경설정을 기준으로 콘텐츠를 저장하고 분류하세요.
6가지 조작 작업을 수행하는 xArm
FeaturesDict({
'episode_metadata': FeaturesDict({
'file_path': Text(shape=(), dtype=string),
}),
'steps': Dataset({
'action': Tensor(shape=(8,), dtype=float32, description=Robot action, consists of [7 delta joint pos,1x gripper binary state].),
'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
'language_instruction': Text(shape=(), dtype=string),
'observation': FeaturesDict({
'gripper': Scalar(shape=(), dtype=bool, description=Binary gripper state (1 - closed, 0 - open)),
'hand_image': Image(shape=(480, 640, 3), dtype=uint8, description=Hand camera RGB observation.),
'joint_pos': Tensor(shape=(7,), dtype=float32, description=xArm joint positions (7 DoF).),
'pose': Tensor(shape=(7,), dtype=float32, description=Gripper pose, robot frame, [3 position, 4 rotation]),
}),
'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
}),
})
특징 | 수업 | 모양 | Dtype | 설명 |
---|
| 특징Dict | | | |
에피소드_메타데이터 | 특징Dict | | | |
에피소드_메타데이터/파일_경로 | 텍스트 | | 끈 | 원본 데이터 파일의 경로입니다. |
단계 | 데이터 세트 | | | |
단계/작업 | 텐서 | (8,) | float32 | 로봇 액션은 [7개의 델타 조인트 위치, 1x 그리퍼 바이너리 상태]로 구성됩니다. |
걸음수/할인 | 스칼라 | | float32 | 할인이 제공되면 기본값은 1입니다. |
걸음수/is_first | 텐서 | | 부울 | |
걸음수/is_last | 텐서 | | 부울 | |
단계/is_terminal | 텐서 | | 부울 | |
단계/언어_임베딩 | 텐서 | (512,) | float32 | 코나 언어 임베딩. https://tfhub.dev/google/universal-sentence-encoder-large/5를 참조하세요. |
단계/언어_지시 | 텍스트 | | 끈 | 언어 교육. |
단계/관찰 | 특징Dict | | | |
단계/관찰/그리퍼 | 스칼라 | | 부울 | 바이너리 그리퍼 상태(1 - 닫힘, 0 - 열림) |
단계/관찰/손_이미지 | 영상 | (480, 640, 3) | uint8 | 핸드카메라 RGB 관찰. |
단계/관찰/joint_pos | 텐서 | (7,) | float32 | xArm 관절 위치(7 DoF). |
걸음/관찰/포즈 | 텐서 | (7,) | float32 | 그리퍼 포즈, 로봇 프레임, [3위치, 4회전] |
걸음 수/보상 | 스칼라 | | float32 | 제공되는 경우 보상, 데모의 마지막 단계에서 1개. |
@InProceedings{Radosavovic2022,
title = {Real-World Robot Learning with Masked Visual Pre-training},
author = {Ilija Radosavovic and Tete Xiao and Stephen James and Pieter Abbeel and Jitendra Malik and Trevor Darrell},
booktitle = {CoRL},
year = {2022}
}
달리 명시되지 않는 한 이 페이지의 콘텐츠에는 Creative Commons Attribution 4.0 라이선스에 따라 라이선스가 부여되며, 코드 샘플에는 Apache 2.0 라이선스에 따라 라이선스가 부여됩니다. 자세한 내용은 Google Developers 사이트 정책을 참조하세요. 자바는 Oracle 및/또는 Oracle 계열사의 등록 상표입니다.
최종 업데이트: 2024-09-04(UTC)
[null,null,["최종 업데이트: 2024-09-04(UTC)"],[],[],null,["# berkeley_mvp_converted_externally_to_rlds\n\n\u003cbr /\u003e\n\n- **Description**:\n\nxArm performing 6 manipulation tasks\n\n- **Homepage** :\n \u003chttps://arxiv.org/abs/2203.06173\u003e\n\n- **Source code** :\n [`tfds.robotics.rtx.BerkeleyMvpConvertedExternallyToRlds`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/robotics/rtx/rtx.py)\n\n- **Versions**:\n\n - **`0.1.0`** (default): Initial release.\n- **Download size** : `Unknown size`\n\n- **Dataset size** : `12.34 GiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Splits**:\n\n| Split | Examples |\n|-----------|----------|\n| `'train'` | 480 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'episode_metadata': FeaturesDict({\n 'file_path': Text(shape=(), dtype=string),\n }),\n 'steps': Dataset({\n 'action': Tensor(shape=(8,), dtype=float32, description=Robot action, consists of [7 delta joint pos,1x gripper binary state].),\n 'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),\n 'is_first': bool,\n 'is_last': bool,\n 'is_terminal': bool,\n 'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),\n 'language_instruction': Text(shape=(), dtype=string),\n 'observation': FeaturesDict({\n 'gripper': Scalar(shape=(), dtype=bool, description=Binary gripper state (1 - closed, 0 - open)),\n 'hand_image': Image(shape=(480, 640, 3), dtype=uint8, description=Hand camera RGB observation.),\n 'joint_pos': Tensor(shape=(7,), dtype=float32, description=xArm joint positions (7 DoF).),\n 'pose': Tensor(shape=(7,), dtype=float32, description=Gripper pose, robot frame, [3 position, 4 rotation]),\n }),\n 'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),\n }),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|------------------------------|--------------|---------------|---------|--------------------------------------------------------------------------------------------|\n| | FeaturesDict | | | |\n| episode_metadata | FeaturesDict | | | |\n| episode_metadata/file_path | Text | | string | Path to the original data file. |\n| steps | Dataset | | | |\n| steps/action | Tensor | (8,) | float32 | Robot action, consists of \\[7 delta joint pos,1x gripper binary state\\]. |\n| steps/discount | Scalar | | float32 | Discount if provided, default to 1. |\n| steps/is_first | Tensor | | bool | |\n| steps/is_last | Tensor | | bool | |\n| steps/is_terminal | Tensor | | bool | |\n| steps/language_embedding | Tensor | (512,) | float32 | Kona language embedding. See \u003chttps://tfhub.dev/google/universal-sentence-encoder-large/5\u003e |\n| steps/language_instruction | Text | | string | Language Instruction. |\n| steps/observation | FeaturesDict | | | |\n| steps/observation/gripper | Scalar | | bool | Binary gripper state (1 - closed, 0 - open) |\n| steps/observation/hand_image | Image | (480, 640, 3) | uint8 | Hand camera RGB observation. |\n| steps/observation/joint_pos | Tensor | (7,) | float32 | xArm joint positions (7 DoF). |\n| steps/observation/pose | Tensor | (7,) | float32 | Gripper pose, robot frame, \\[3 position, 4 rotation\\] |\n| steps/reward | Scalar | | float32 | Reward if provided, 1 on final step for demos. |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @InProceedings{Radosavovic2022,\n title = {Real-World Robot Learning with Masked Visual Pre-training},\n author = {Ilija Radosavovic and Tete Xiao and Stephen James and Pieter Abbeel and Jitendra Malik and Trevor Darrell},\n booktitle = {CoRL},\n year = {2022}\n }"]]