utokyo_pr2_tabletop_manipulation_converted_externally_to_rlds

  • 설명 :

PR2 탁상 조작(접는 천, 따기)

나뉘다
'train' 192
'val' 48
  • 기능 구조 :
FeaturesDict({
    'episode_metadata': FeaturesDict({
        'file_path': Text(shape=(), dtype=string),
    }),
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32, description=Robot action, consists of [3x end effector pos, 3x robot rpy angles, 1x gripper open/close command, 1x terminal action].),
        'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
        'language_instruction': Text(shape=(), dtype=string),
        'observation': FeaturesDict({
            'image': Image(shape=(128, 128, 3), dtype=uint8, description=Main camera RGB observation.),
            'state': Tensor(shape=(7,), dtype=float32, description=Robot state, consists of [3x end effector pos, 3x robot rpy angles, 1x gripper position].),
        }),
        'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
    }),
})
  • 기능 문서 :
특징 수업 모양 Dtype 설명
특징Dict
에피소드_메타데이터 특징Dict
에피소드_메타데이터/파일_경로 텍스트 원본 데이터 파일의 경로입니다.
단계 데이터세트
단계/작업 텐서 (8,) float32 로봇 액션은 [3x 엔드 이펙터 위치, 3x 로봇 rpy 각도, 1x 그리퍼 열기/닫기 명령, 1x 터미널 액션]으로 구성됩니다.
걸음수/할인 스칼라 float32 할인이 제공되면 기본값은 1입니다.
걸음수/is_first 텐서 부울
걸음수/is_last 텐서 부울
단계/is_terminal 텐서 부울
단계/언어_임베딩 텐서 (512,) float32 코나 언어 임베딩. https://tfhub.dev/google/universal-sentence-encoder-large/5를 참조하세요.
단계/언어_지시 텍스트 언어 교육.
단계/관찰 특징Dict
단계/관찰/이미지 영상 (128, 128, 3) uint8 메인 카메라 RGB 관찰.
단계/관찰/상태 텐서 (7,) float32 로봇 상태는 [3x 엔드 이펙터 위치, 3x 로봇 rpy 각도, 1x 그리퍼 위치]로 구성됩니다.
걸음 수/보상 스칼라 float32 제공되는 경우 보상, 데모의 마지막 단계에서 1개.
@misc{oh2023pr2utokyodatasets,
  author={Jihoon Oh and Naoaki Kanazawa and Kento Kawaharazuka},
  title={X-Embodiment U-Tokyo PR2 Datasets},
  year={2023},
  url={https://github.com/ojh6404/rlds_dataset_builder},
}