wsc273
コレクションでコンテンツを整理
必要に応じて、コンテンツの保存と分類を行います。
WSC273 は、あいまいな代名詞を含む文をシステムが読み取り、その代名詞の指示対象を 2 つの選択肢から選択することをシステムに要求する、常識推論のベンチマークです。これには、Winograd Schema Challenge の最初の 273 の例が含まれています。ウィノグラード スキーマは、1 つまたは 2 つの単語だけが異なる文のペアであり、2 つの文で反対の方法で解決されるあいまいさを含み、その解決には世界の知識と推論を使用する必要があります。スキーマの名前は、テリー ウィノグラードの有名な例に由来しますThe city councilmen refused the demonstrators a permit because they [feared/advocated] violence.'' If the word is
they'' presumably refers to the city council; if it is
提唱されている場合、「彼ら」はおそらくデモ参加者を指します。
FeaturesDict({
'idx': int32,
'label': int32,
'option1': Text(shape=(), dtype=string),
'option1_normalized': Text(shape=(), dtype=string),
'option2': Text(shape=(), dtype=string),
'option2_normalized': Text(shape=(), dtype=string),
'pronoun_end': int32,
'pronoun_start': int32,
'pronoun_text': Text(shape=(), dtype=string),
'text': Text(shape=(), dtype=string),
})
特徴 | クラス | 形 | Dtype | 説明 |
---|
| 特徴辞書 | | | |
idx | テンソル | | int32 | |
ラベル | テンソル | | int32 | |
オプション1 | 文章 | | ストリング | |
option1_normalized | 文章 | | ストリング | |
オプション2 | 文章 | | ストリング | |
option2_normalized | 文章 | | ストリング | |
代名詞の終わり | テンソル | | int32 | |
pronoun_start | テンソル | | int32 | |
代名詞テキスト | 文章 | | ストリング | |
文章 | 文章 | | ストリング | |
@inproceedings{levesque2012winograd,
title={The winograd schema challenge},
author={Levesque, Hector and Davis, Ernest and Morgenstern, Leora},
booktitle={Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning},
year={2012},
organization={Citeseer}
}
特に記載のない限り、このページのコンテンツはクリエイティブ・コモンズの表示 4.0 ライセンスにより使用許諾されます。コードサンプルは Apache 2.0 ライセンスにより使用許諾されます。詳しくは、Google Developers サイトのポリシーをご覧ください。Java は Oracle および関連会社の登録商標です。
最終更新日 2022-12-06 UTC。
[null,null,["最終更新日 2022-12-06 UTC。"],[],[],null,["# wsc273\n\n\u003cbr /\u003e\n\n- **Description**:\n\nWSC273 is a common sense reasoning benchmark that requires the system to read a\nsentence with an ambiguous pronoun and select the referent of that pronoun from\ntwo choices. It contains the first 273 examples from the Winograd Schema\nChallenge. A Winograd schema is a pair of sentences that differ in only one or\ntwo words and that contain an ambiguity that is resolved in opposite ways in the\ntwo sentences and requires the use of world knowledge and reasoning for its\nresolution. The schema takes its name from a well-known example by Terry\nWinograd: `The city councilmen refused the demonstrators a permit because they\n[feared/advocated] violence.'' If the word is`feared'', then `they'' presumably\nrefers to the city council; if it is`advocated'' then \\`\\`they'' presumably refers\nto the demonstrators.\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/wsc)\n\n- **Homepage** :\n \u003chttps://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html\u003e\n\n- **Source code** :\n [`tfds.text.wsc273.Wsc273`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/text/wsc273/wsc273.py)\n\n- **Versions**:\n\n - **`1.0.0`** (default): No release notes.\n- **Download size** : `110.58 KiB`\n\n- **Dataset size** : `87.15 KiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Yes\n\n- **Splits**:\n\n| Split | Examples |\n|----------|----------|\n| `'test'` | 273 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'idx': int32,\n 'label': int32,\n 'option1': Text(shape=(), dtype=string),\n 'option1_normalized': Text(shape=(), dtype=string),\n 'option2': Text(shape=(), dtype=string),\n 'option2_normalized': Text(shape=(), dtype=string),\n 'pronoun_end': int32,\n 'pronoun_start': int32,\n 'pronoun_text': Text(shape=(), dtype=string),\n 'text': Text(shape=(), dtype=string),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|--------------------|--------------|-------|--------|-------------|\n| | FeaturesDict | | | |\n| idx | Tensor | | int32 | |\n| label | Tensor | | int32 | |\n| option1 | Text | | string | |\n| option1_normalized | Text | | string | |\n| option2 | Text | | string | |\n| option2_normalized | Text | | string | |\n| pronoun_end | Tensor | | int32 | |\n| pronoun_start | Tensor | | int32 | |\n| pronoun_text | Text | | string | |\n| text | Text | | string | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @inproceedings{levesque2012winograd,\n title={The winograd schema challenge},\n author={Levesque, Hector and Davis, Ernest and Morgenstern, Leora},\n booktitle={Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning},\n year={2012},\n organization={Citeseer}\n }"]]