wsc273
컬렉션을 사용해 정리하기
내 환경설정을 기준으로 콘텐츠를 저장하고 분류하세요.
WSC273은 시스템이 모호한 대명사가 있는 문장을 읽고 두 가지 선택 중에서 해당 대명사의 지시 대상을 선택해야 하는 상식 추론 벤치마크입니다. 여기에는 Winograd Schema Challenge의 처음 273개 예제가 포함되어 있습니다. Winograd 스키마는 하나 또는 두 개의 단어만 다르고 두 문장에서 반대 방식으로 해결되는 모호성을 포함하고 해결을 위해 세계 지식 및 추론을 사용해야 하는 한 쌍의 문장입니다. 이 도식 they'' presumably refers to the city council; if it is
Terry Winograd의 잘 알려진 예에서 그 이름을 따왔습니다 The city councilmen refused the demonstrators a permit because they [feared/advocated] violence.'' If the word is
they'' presumably refers to the city council; if it is
'' '그들''은 아마도 시위대를 가리킬 것입니다.
FeaturesDict({
'idx': int32,
'label': int32,
'option1': Text(shape=(), dtype=string),
'option1_normalized': Text(shape=(), dtype=string),
'option2': Text(shape=(), dtype=string),
'option2_normalized': Text(shape=(), dtype=string),
'pronoun_end': int32,
'pronoun_start': int32,
'pronoun_text': Text(shape=(), dtype=string),
'text': Text(shape=(), dtype=string),
})
특징 | 수업 | 모양 | D타입 | 설명 |
---|
| 풍모Dict | | | |
아이디엑스 | 텐서 | | int32 | |
상표 | 텐서 | | int32 | |
옵션 1 | 텍스트 | | 끈 | |
option1_정규화 | 텍스트 | | 끈 | |
옵션2 | 텍스트 | | 끈 | |
option2_정규화 | 텍스트 | | 끈 | |
대명사_끝 | 텐서 | | int32 | |
대명사 시작 | 텐서 | | int32 | |
대명사_텍스트 | 텍스트 | | 끈 | |
텍스트 | 텍스트 | | 끈 | |
@inproceedings{levesque2012winograd,
title={The winograd schema challenge},
author={Levesque, Hector and Davis, Ernest and Morgenstern, Leora},
booktitle={Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning},
year={2012},
organization={Citeseer}
}
달리 명시되지 않는 한 이 페이지의 콘텐츠에는 Creative Commons Attribution 4.0 라이선스에 따라 라이선스가 부여되며, 코드 샘플에는 Apache 2.0 라이선스에 따라 라이선스가 부여됩니다. 자세한 내용은 Google Developers 사이트 정책을 참조하세요. 자바는 Oracle 및/또는 Oracle 계열사의 등록 상표입니다.
최종 업데이트: 2022-12-06(UTC)
[null,null,["최종 업데이트: 2022-12-06(UTC)"],[],[],null,["# wsc273\n\n\u003cbr /\u003e\n\n- **Description**:\n\nWSC273 is a common sense reasoning benchmark that requires the system to read a\nsentence with an ambiguous pronoun and select the referent of that pronoun from\ntwo choices. It contains the first 273 examples from the Winograd Schema\nChallenge. A Winograd schema is a pair of sentences that differ in only one or\ntwo words and that contain an ambiguity that is resolved in opposite ways in the\ntwo sentences and requires the use of world knowledge and reasoning for its\nresolution. The schema takes its name from a well-known example by Terry\nWinograd: `The city councilmen refused the demonstrators a permit because they\n[feared/advocated] violence.'' If the word is`feared'', then `they'' presumably\nrefers to the city council; if it is`advocated'' then \\`\\`they'' presumably refers\nto the demonstrators.\n\n- **Additional Documentation** :\n [Explore on Papers With Code\n north_east](https://paperswithcode.com/dataset/wsc)\n\n- **Homepage** :\n \u003chttps://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html\u003e\n\n- **Source code** :\n [`tfds.text.wsc273.Wsc273`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/text/wsc273/wsc273.py)\n\n- **Versions**:\n\n - **`1.0.0`** (default): No release notes.\n- **Download size** : `110.58 KiB`\n\n- **Dataset size** : `87.15 KiB`\n\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n Yes\n\n- **Splits**:\n\n| Split | Examples |\n|----------|----------|\n| `'test'` | 273 |\n\n- **Feature structure**:\n\n FeaturesDict({\n 'idx': int32,\n 'label': int32,\n 'option1': Text(shape=(), dtype=string),\n 'option1_normalized': Text(shape=(), dtype=string),\n 'option2': Text(shape=(), dtype=string),\n 'option2_normalized': Text(shape=(), dtype=string),\n 'pronoun_end': int32,\n 'pronoun_start': int32,\n 'pronoun_text': Text(shape=(), dtype=string),\n 'text': Text(shape=(), dtype=string),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|--------------------|--------------|-------|--------|-------------|\n| | FeaturesDict | | | |\n| idx | Tensor | | int32 | |\n| label | Tensor | | int32 | |\n| option1 | Text | | string | |\n| option1_normalized | Text | | string | |\n| option2 | Text | | string | |\n| option2_normalized | Text | | string | |\n| pronoun_end | Tensor | | int32 | |\n| pronoun_start | Tensor | | int32 | |\n| pronoun_text | Text | | string | |\n| text | Text | | string | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `None`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Examples**\n ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\n- **Citation**:\n\n @inproceedings{levesque2012winograd,\n title={The winograd schema challenge},\n author={Levesque, Hector and Davis, Ernest and Morgenstern, Leora},\n booktitle={Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning},\n year={2012},\n organization={Citeseer}\n }"]]