code_x_glue_cc_code_refinement

참고자료:

중간

TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.

ds = tfds.load('huggingface:code_x_glue_cc_code_refinement/medium')
  • 설명 :
CodeXGLUE code-refinement dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-refinement

We use the dataset released by this paper(https://arxiv.org/pdf/1812.08693.pdf). The source side is a Java function with bugs and the target side is the refined one. All the function and variable names are normalized. Their dataset contains two subsets ( i.e.small and medium) based on the function length.
  • 라이센스 : 알려진 라이센스 없음
  • 버전 : 0.0.0
  • 분할 :
나뉘다
'test' 6545
'train' 52364
'validation' 6546
  • 특징 :
{
    "id": {
        "dtype": "int32",
        "id": null,
        "_type": "Value"
    },
    "buggy": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "fixed": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}

작은

TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.

ds = tfds.load('huggingface:code_x_glue_cc_code_refinement/small')
  • 설명 :
CodeXGLUE code-refinement dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-refinement

We use the dataset released by this paper(https://arxiv.org/pdf/1812.08693.pdf). The source side is a Java function with bugs and the target side is the refined one. All the function and variable names are normalized. Their dataset contains two subsets ( i.e.small and medium) based on the function length.
  • 라이센스 : 알려진 라이센스 없음
  • 버전 : 0.0.0
  • 분할 :
나뉘다
'test' 5835
'train' 46680
'validation' 5835
  • 특징 :
{
    "id": {
        "dtype": "int32",
        "id": null,
        "_type": "Value"
    },
    "buggy": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "fixed": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    }
}