참고자료:
en_de
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:covost2/en_de')
- 설명 :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- 특징 :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
en_tr
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:covost2/en_tr')
- 설명 :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- 특징 :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
en_fa
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:covost2/en_fa')
- 설명 :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- 특징 :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
en_sv-SE
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:covost2/en_sv-SE')
- 설명 :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- 특징 :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
en_mn
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:covost2/en_mn')
- 설명 :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- 특징 :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
en_zh-CN
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:covost2/en_zh-CN')
- 설명 :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- 특징 :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
en_cy
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:covost2/en_cy')
- 설명 :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- 특징 :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
en_ca
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:covost2/en_ca')
- 설명 :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- 특징 :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
en_sl
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:covost2/en_sl')
- 설명 :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- 특징 :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
ko_et
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:covost2/en_et')
- 설명 :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- 특징 :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
en_id
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:covost2/en_id')
- 설명 :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- 특징 :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
ko_ar
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:covost2/en_ar')
- 설명 :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- 특징 :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
en_ta
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:covost2/en_ta')
- 설명 :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- 특징 :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
en_lv
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:covost2/en_lv')
- 설명 :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- 특징 :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
en_ja
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:covost2/en_ja')
- 설명 :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'test' | 15531 |
'train' | 289430 |
'validation' | 15531 |
- 특징 :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
fr_en
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:covost2/fr_en')
- 설명 :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'test' | 14760 |
'train' | 207374 |
'validation' | 14760 |
- 특징 :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
드엔
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:covost2/de_en')
- 설명 :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'test' | 13511 |
'train' | 127834 |
'validation' | 13511 |
- 특징 :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
es_en
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:covost2/es_en')
- 설명 :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'test' | 13221 |
'train' | 79015 |
'validation' | 13221 |
- 특징 :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
ca_en
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:covost2/ca_en')
- 설명 :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'test' | 12730 |
'train' | 95854 |
'validation' | 12730 |
- 특징 :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
it_en
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:covost2/it_en')
- 설명 :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'test' | 8951 |
'train' | 31698 |
'validation' | 8940 |
- 특징 :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
ru_en
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:covost2/ru_en')
- 설명 :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'test' | 6300 |
'train' | 12112 |
'validation' | 6110 |
- 특징 :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
zh-CN_en
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:covost2/zh-CN_en')
- 설명 :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'test' | 4898 |
'train' | 7085 |
'validation' | 4843 |
- 특징 :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
pt_en
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:covost2/pt_en')
- 설명 :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'test' | 4023 |
'train' | 9158 |
'validation' | 3318 |
- 특징 :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
fa_en
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:covost2/fa_en')
- 설명 :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'test' | 3445 |
'train' | 53949 |
'validation' | 3445 |
- 특징 :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
et_en
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:covost2/et_en')
- 설명 :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'test' | 1571 |
'train' | 1782년 |
'validation' | 1576년 |
- 특징 :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
mn_en
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:covost2/mn_en')
- 설명 :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'test' | 1759년 |
'train' | 2067 |
'validation' | 1761년 |
- 특징 :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
nl_en
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:covost2/nl_en')
- 설명 :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'test' | 1699년 |
'train' | 7108 |
'validation' | 1699년 |
- 특징 :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
tr_en
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:covost2/tr_en')
- 설명 :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'test' | 1629년 |
'train' | 3966 |
'validation' | 1624년 |
- 특징 :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
ar_en
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:covost2/ar_en')
- 설명 :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'test' | 1695년 |
'train' | 2283 |
'validation' | 1758년 |
- 특징 :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
sv-SE_ko
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:covost2/sv-SE_en')
- 설명 :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'test' | 1595년 |
'train' | 2160 |
'validation' | 1349 |
- 특징 :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
lv_en
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:covost2/lv_en')
- 설명 :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'test' | 1629년 |
'train' | 2337 |
'validation' | 1125 |
- 특징 :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
sl_en
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:covost2/sl_en')
- 설명 :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'test' | 360 |
'train' | 1843년 |
'validation' | 509 |
- 특징 :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
ta_en
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:covost2/ta_en')
- 설명 :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'test' | 786 |
'train' | 1358 |
'validation' | 384 |
- 특징 :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
ja_en
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:covost2/ja_en')
- 설명 :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'test' | 684 |
'train' | 1119 |
'validation' | 635 |
- 특징 :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
id_en
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:covost2/id_en')
- 설명 :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'test' | 844 |
'train' | 1243 |
'validation' | 792 |
- 특징 :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}
cy_en
TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.
ds = tfds.load('huggingface:covost2/cy_en')
- 설명 :
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
- 라이센스 : 알려진 라이센스 없음
- 버전 : 1.0.0
- 분할 :
나뉘다 | 예 |
---|---|
'test' | 690 |
'train' | 1241 |
'validation' | 690 |
- 특징 :
{
"client_id": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"file": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"sentence": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"translation": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"id": {
"dtype": "string",
"id": null,
"_type": "Value"
}
}