분대_적대

참고자료:

분대_적

TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.

ds = tfds.load('huggingface:squad_adversarial/squad_adversarial')
  • 설명 :
Here are two different adversaries, each of which uses a different procedure to pick the sentence it adds to the paragraph:
AddSent: Generates up to five candidate adversarial sentences that don't answer the question, but have a lot of words in common with the question. Picks the one that most confuses the model.
AddOneSent: Similar to AddSent, but just picks one of the candidate sentences at random. This adversary is does not query the model in any way.
  • 라이센스 : MIT 라이센스
  • 버전 : 1.1.0
  • 분할 :
나뉘다
'AddOneSent' 1787년
'AddSent' 3560
  • 특징 :
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "title": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "context": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answers": {
        "feature": {
            "text": {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            },
            "answer_start": {
                "dtype": "int32",
                "id": null,
                "_type": "Value"
            }
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

추가보냄

TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.

ds = tfds.load('huggingface:squad_adversarial/AddSent')
  • 설명 :
Here are two different adversaries, each of which uses a different procedure to pick the sentence it adds to the paragraph:
AddSent: Generates up to five candidate adversarial sentences that don't answer the question, but have a lot of words in common with the question. Picks the one that most confuses the model.
AddOneSent: Similar to AddSent, but just picks one of the candidate sentences at random. This adversary is does not query the model in any way.
  • 라이센스 : MIT 라이센스
  • 버전 : 1.1.0
  • 분할 :
나뉘다
'validation' 3560
  • 특징 :
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "title": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "context": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answers": {
        "feature": {
            "text": {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            },
            "answer_start": {
                "dtype": "int32",
                "id": null,
                "_type": "Value"
            }
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}

AddOneSent

TFDS에 이 데이터세트를 로드하려면 다음 명령어를 사용하세요.

ds = tfds.load('huggingface:squad_adversarial/AddOneSent')
  • 설명 :
Here are two different adversaries, each of which uses a different procedure to pick the sentence it adds to the paragraph:
AddSent: Generates up to five candidate adversarial sentences that don't answer the question, but have a lot of words in common with the question. Picks the one that most confuses the model.
AddOneSent: Similar to AddSent, but just picks one of the candidate sentences at random. This adversary is does not query the model in any way.
  • 라이센스 : MIT 라이센스
  • 버전 : 1.1.0
  • 분할 :
나뉘다
'validation' 1787년
  • 특징 :
{
    "id": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "title": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "context": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "question": {
        "dtype": "string",
        "id": null,
        "_type": "Value"
    },
    "answers": {
        "feature": {
            "text": {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            },
            "answer_start": {
                "dtype": "int32",
                "id": null,
                "_type": "Value"
            }
        },
        "length": -1,
        "id": null,
        "_type": "Sequence"
    }
}