Conozca lo último en aprendizaje automático, IA generativa y más en el
Simposio WiML 2023.
protein_net
Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
ProteinNet es un conjunto de datos estandarizados para el aprendizaje automático de la estructura de proteínas. Proporciona secuencias de proteínas, estructuras (secundarias y terciarias), alineamientos de secuencias múltiples (MSA), matrices de puntuación específicas de posición (PSSM) y divisiones estandarizadas de entrenamiento/validación/prueba. ProteinNet se basa en las evaluaciones CASP bienales, que llevan a cabo predicciones ciegas de estructuras de proteínas recientemente resueltas pero no disponibles públicamente, para proporcionar conjuntos de pruebas que amplían las fronteras de la metodología computacional. Está organizado como una serie de conjuntos de datos, que abarca CASP 7 a 12 (que cubre un período de diez años), para proporcionar una gama de tamaños de conjuntos de datos que permiten la evaluación de nuevos métodos en regímenes relativamente pobres y ricos en datos.
FeaturesDict({
'evolutionary': Tensor(shape=(None, 21), dtype=float32),
'id': Text(shape=(), dtype=string),
'length': int32,
'mask': Tensor(shape=(None,), dtype=bool),
'primary': Sequence(ClassLabel(shape=(), dtype=int64, num_classes=20)),
'tertiary': Tensor(shape=(None, 3), dtype=float32),
})
- Documentación de características :
Rasgo | Clase | Forma | Tipo D | Descripción |
---|
| CaracterísticasDict | | | |
evolutivo | Tensor | (Ninguno, 21) | flotar32 | |
identificación | Texto | | cadena | |
longitud | Tensor | | int32 | |
máscara | Tensor | (Ninguno,) | bool | |
primario | Secuencia (Etiqueta de clase) | (Ninguno,) | int64 | |
terciario | Tensor | (Ninguno, 3) | flotar32 | |
@article{ProteinNet19,
title = { {ProteinNet}: a standardized data set for machine learning of protein structure},
author = {AlQuraishi, Mohammed},
journal = {BMC bioinformatics},
volume = {20},
number = {1},
pages = {1--10},
year = {2019},
publisher = {BioMed Central}
}
protein_net/casp7 (configuración predeterminada)
Separar | Ejemplos |
---|
'test' | 93 |
'train_100' | 34,557 |
'train_30' | 10,333 |
'train_50' | 13,024 |
'train_70' | 15,207 |
'train_90' | 17,611 |
'train_95' | 17,938 |
'validation' | 224 |
protein_net/casp8
Separar | Ejemplos |
---|
'test' | 120 |
'train_100' | 48,087 |
'train_30' | 13,881 |
'train_50' | 17,970 |
'train_70' | 21,191 |
'train_90' | 24,556 |
'train_95' | 25,035 |
'validation' | 224 |
protein_net/casp9
Separar | Ejemplos |
---|
'test' | 116 |
'train_100' | 60,350 |
'train_30' | 16,973 |
'train_50' | 22,172 |
'train_70' | 26,263 |
'train_90' | 30,513 |
'train_95' | 31,128 |
'validation' | 224 |
protein_net/casp10
Separar | Ejemplos |
---|
'test' | 95 |
'train_100' | 73,116 |
'train_30' | 19,495 |
'train_50' | 25,897 |
'train_70' | 31,001 |
'train_90' | 36,258 |
'train_95' | 37,033 |
'validation' | 224 |
protein_net/casp11
Separar | Ejemplos |
---|
'test' | 81 |
'train_100' | 87,573 |
'train_30' | 22,344 |
'train_50' | 29,936 |
'train_70' | 36,005 |
'train_90' | 42,507 |
'train_95' | 43,544 |
'validation' | 224 |
protein_net/casp12
Separar | Ejemplos |
---|
'test' | 40 |
'train_100' | 104,059 |
'train_30' | 25,299 |
'train_50' | 34,039 |
'train_70' | 41,522 |
'train_90' | 49,600 |
'train_95' | 50,914 |
'validation' | 224 |
Salvo que se indique lo contrario, el contenido de esta página está sujeto a la licencia Atribución 4.0 de Creative Commons, y los ejemplos de código están sujetos a la licencia Apache 2.0. Para obtener más información, consulta las políticas del sitio de Google Developers. Java es una marca registrada de Oracle o sus afiliados.
Última actualización: 2022-12-16 (UTC)
[null,null,["Última actualización: 2022-12-16 (UTC)"],[],[],null,["# protein_net\n\n\u003cbr /\u003e\n\n- **Description**:\n\nProteinNet is a standardized data set for machine learning of protein structure.\nIt provides protein sequences, structures (secondary and tertiary), multiple\nsequence alignments (MSAs), position-specific scoring matrices (PSSMs), and\nstandardized training / validation / test splits. ProteinNet builds on the\nbiennial CASP assessments, which carry out blind predictions of recently solved\nbut publicly unavailable protein structures, to provide test sets that push the\nfrontiers of computational methodology. It is organized as a series of data\nsets, spanning CASP 7 through 12 (covering a ten-year period), to provide a\nrange of data set sizes that enable assessment of new methods in relatively data\npoor and data rich regimes.\n\n- **Homepage** :\n \u003chttps://github.com/aqlaboratory/proteinnet\u003e\n\n- **Source code** :\n [`tfds.datasets.protein_net.Builder`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/datasets/protein_net/protein_net_dataset_builder.py)\n\n- **Versions**:\n\n - **`1.0.0`** (default): Initial release.\n- **Auto-cached**\n ([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):\n No\n\n- **Feature structure**:\n\n FeaturesDict({\n 'evolutionary': Tensor(shape=(None, 21), dtype=float32),\n 'id': Text(shape=(), dtype=string),\n 'length': int32,\n 'mask': Tensor(shape=(None,), dtype=bool),\n 'primary': Sequence(ClassLabel(shape=(), dtype=int64, num_classes=20)),\n 'tertiary': Tensor(shape=(None, 3), dtype=float32),\n })\n\n- **Feature documentation**:\n\n| Feature | Class | Shape | Dtype | Description |\n|--------------|----------------------|------------|---------|-------------|\n| | FeaturesDict | | | |\n| evolutionary | Tensor | (None, 21) | float32 | |\n| id | Text | | string | |\n| length | Tensor | | int32 | |\n| mask | Tensor | (None,) | bool | |\n| primary | Sequence(ClassLabel) | (None,) | int64 | |\n| tertiary | Tensor | (None, 3) | float32 | |\n\n- **Supervised keys** (See\n [`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):\n `('primary', 'tertiary')`\n\n- **Figure**\n ([tfds.show_examples](https://www.tensorflow.org/datasets/api_docs/python/tfds/visualization/show_examples)):\n Not supported.\n\n- **Citation**:\n\n @article{ProteinNet19,\n title = { {ProteinNet}: a standardized data set for machine learning of protein structure},\n author = {AlQuraishi, Mohammed},\n journal = {BMC bioinformatics},\n volume = {20},\n number = {1},\n pages = {1--10},\n year = {2019},\n publisher = {BioMed Central}\n }\n\nprotein_net/casp7 (default config)\n----------------------------------\n\n- **Download size** : `3.18 GiB`\n\n- **Dataset size** : `2.53 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 93 |\n| `'train_100'` | 34,557 |\n| `'train_30'` | 10,333 |\n| `'train_50'` | 13,024 |\n| `'train_70'` | 15,207 |\n| `'train_90'` | 17,611 |\n| `'train_95'` | 17,938 |\n| `'validation'` | 224 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nprotein_net/casp8\n-----------------\n\n- **Download size** : `4.96 GiB`\n\n- **Dataset size** : `3.55 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 120 |\n| `'train_100'` | 48,087 |\n| `'train_30'` | 13,881 |\n| `'train_50'` | 17,970 |\n| `'train_70'` | 21,191 |\n| `'train_90'` | 24,556 |\n| `'train_95'` | 25,035 |\n| `'validation'` | 224 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nprotein_net/casp9\n-----------------\n\n- **Download size** : `6.65 GiB`\n\n- **Dataset size** : `4.54 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 116 |\n| `'train_100'` | 60,350 |\n| `'train_30'` | 16,973 |\n| `'train_50'` | 22,172 |\n| `'train_70'` | 26,263 |\n| `'train_90'` | 30,513 |\n| `'train_95'` | 31,128 |\n| `'validation'` | 224 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nprotein_net/casp10\n------------------\n\n- **Download size** : `8.65 GiB`\n\n- **Dataset size** : `5.57 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 95 |\n| `'train_100'` | 73,116 |\n| `'train_30'` | 19,495 |\n| `'train_50'` | 25,897 |\n| `'train_70'` | 31,001 |\n| `'train_90'` | 36,258 |\n| `'train_95'` | 37,033 |\n| `'validation'` | 224 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nprotein_net/casp11\n------------------\n\n- **Download size** : `10.81 GiB`\n\n- **Dataset size** : `6.72 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 81 |\n| `'train_100'` | 87,573 |\n| `'train_30'` | 22,344 |\n| `'train_50'` | 29,936 |\n| `'train_70'` | 36,005 |\n| `'train_90'` | 42,507 |\n| `'train_95'` | 43,544 |\n| `'validation'` | 224 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples... \n\nprotein_net/casp12\n------------------\n\n- **Download size** : `13.18 GiB`\n\n- **Dataset size** : `8.05 GiB`\n\n- **Splits**:\n\n| Split | Examples |\n|----------------|----------|\n| `'test'` | 40 |\n| `'train_100'` | 104,059 |\n| `'train_30'` | 25,299 |\n| `'train_50'` | 34,039 |\n| `'train_70'` | 41,522 |\n| `'train_90'` | 49,600 |\n| `'train_95'` | 50,914 |\n| `'validation'` | 224 |\n\n- **Examples** ([tfds.as_dataframe](https://www.tensorflow.org/datasets/api_docs/python/tfds/as_dataframe)):\n\nDisplay examples..."]]