View source on GitHub |
Returns a tff.learning.optimizers.Optimizer
for RMSprop.
tff.learning.optimizers.build_rmsprop(
learning_rate: optimizer.Float,
decay: optimizer.Float = 0.9,
epsilon: optimizer.Float = 1e-07
) -> tff.learning.optimizers.Optimizer
The RMSprop optimizer is based on Tieleman and Hinton, 2012.
The update rule given learning rate lr
, epsilon eps
, decay d
,
preconditioner s
, weights w
and gradients g
is:
s = d * s + (1 - d) * g**2
w = w - lr * g / (sqrt(s) + eps)